Search results for: Spherical aerosol.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 175

Search results for: Spherical aerosol.

175 A Novel Slip Correction Factor for Spherical Aerosol Particles

Authors: Abouzar Moshfegh, Mehrzad Shams, Goodarz Ahmadi, Reza Ebrahimi

Abstract:

A 3D simulation study for an incompressible slip flow around a spherical aerosol particle was performed. The full Navier-Stokes equations were solved and the velocity jump at the gas-particle interface was treated numerically by imposition of the slip boundary condition. Analytical solution to the Stokesian slip flow past a spherical particle was used as a benchmark for code verification, and excellent agreement was achieved. The Simulation results showed that in addition to the Knudsen number, the Reynolds number affects the slip correction factor. Thus, the Cunningham-based slip corrections must be augmented by the inclusion of the effect of Reynolds number for application to Lagrangian tracking of fine particles. A new expression for the slip correction factor as a function of both Knudsen number and Reynolds number was developed.

Keywords: CFD, Cunningham correction, Slip correction factor, Spherical aerosol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3495
174 Portable Continuous Aerosol Concentrator for the Determination of NO2 in the Air

Authors: J. Kellner, A. Bumbová, D. Pluskal, A. Langerová, Z. Večeřa, P. Mikuška

Abstract:

The paper deals with the development of portable aerosol concentrator and its application for the determination of nitrites and nitrates. The device enables the continuous trapping of pollutants in the air. An extensive literature search has been elaborated which aims at the development of samplers and the possibilities of their application in the continuous determination of volatile organic compounds. The practical part of the paper is focused on the development of the portable aerosol concentrator. The device using the Aerosol Enrichment Unit has been experimentally verified and subsequently realized. It operates on the principle of equilibrium accumulation of pollutants from the gaseous phase using absorption liquid polydisperse aerosol. The device has been applied for monitoring nitrites and nitrates in the air. The chemiluminescence detector was used for detection; the achieved detection limit for nitrites was 28 ng/m3 and for nitrates 78 ng/m3.

Keywords: aerosol enrichment unit, air pollution, NO2, portableaerosol concentrator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
173 Spherical Spectrum Properties of Quaternionic Operators

Authors: Yiwan Guo, Fahui Zhai

Abstract:

In this paper, the similarity invariant and the upper semi-continuity of spherical spectrum, and the spherical spectrum properties for infinite direct sums of quaternionic operators are characterized, respectively. As an application of some results established, a concrete example about the computation of the spherical spectrum of a compact quaternionic operator with form of infinite direct sums of quaternionic matrices is also given.

Keywords: Spherical spectrum, Quaternionic operator, Upper semi-continuity, Direct sum of operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
172 Modeling Aerosol Formation in an Electrically Heated Tobacco Product

Authors: Markus Nordlund, Arkadiusz K. Kuczaj

Abstract:

Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.

Keywords: Aerosol, Classical Nucleation Theory (CNT), Electrically Heated Tobacco Product (EHTP), Electrically Heated Tobacco System (EHTS), modeling, multicomponent, nucleation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
171 Investigation of Short Time Scale Variation of Solar Radiation Spectrum in UV, PAR, and NIR Bands due to Atmospheric Aerosol and Water Vapor

Authors: Jackson H. W. Chang, Jedol Dayou, Justin Sentian

Abstract:

Long terms variation of solar insolation had been widely studied. However, its parallel observations in short time scale is rather lacking. This paper aims to investigate the short time scale evolution of solar radiation spectrum (UV, PAR, and NIR bands) due to atmospheric aerosols and water vapors. A total of 25 days of global and diffused solar spectrum ranges from air mass 2 to 6 were collected using ground-based spectrometer with shadowband technique. The result shows that variation of solar radiation is the least in UV fraction, followed by PAR and the most in NIR. Broader variations in PAR and NIR are associated with the short time scale fluctuations of aerosol and water vapors. The corresponding daily evolution of UV, PAR, and NIR fractions implies that aerosol and water vapors variation could also be responsible for the deviation pattern in the Langley-plot analysis.

Keywords: Aerosol, short time scale variation, solar radiation, water vapor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
170 Burning Rates of Turbulent Gaseous and Aerosol Flames

Authors: Shaharin A. Sulaiman, Malcolm Lawes

Abstract:

Combustion of sprays is of technological importance, but its flame behavior is not fully understood. Furthermore, the multiplicity of dependent variables such as pressure, temperature, equivalence ratio, and droplet sizes complicates the study of spray combustion. Fundamental study on the influence of the presence of liquid droplets has revealed that laminar flames within aerosol mixtures more readily become unstable than for gaseous ones and this increases the practical burning rate. However, fundamental studies on turbulent flames of aerosol mixtures are limited particularly those under near mono-dispersed droplet conditions. In the present work, centrally ignited expanding flames at near atmospheric pressures are employed to quantify the burning rates in gaseous and aerosol flames. Iso-octane-air aerosols are generated by expansion of the gaseous pre-mixture to produce a homogeneously distributed suspension of fuel droplets. The effects of the presence of droplets and turbulence velocity in relation to the burning rates of the flame are also investigated.

Keywords: Burning Rate, Droplets, Flames, Turbulent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
169 Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays

Authors: D. S. Zhuravkova, A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, I. Y. Kalugina, N. Y. Lysov, A.V. Orlov

Abstract:

Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning.

Keywords: Main stage of discharge, hydrometeor form, lightning parameters, negative and positive artificial charged aerosol cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978
168 Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology

Authors: Ding Jue, Li Jiahua, Lei Zhidi, Weng Peifen, Li Xiaowei

Abstract:

With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30μm of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle.

Keywords: Water droplet, aerosol particle, collision and coagulation, multi-Monte Carlo method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
167 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map

Authors: Alexandros Leontitsis, Archana P. Sangole

Abstract:

This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.

Keywords: Parameter estimation, self-organizing feature maps, spherical topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
166 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3015
165 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
164 Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model

Authors: Jedol Dayou, Jackson Hian Wui Chang, Rubena Yusoff, Ag. Sufiyan Abd. Hamid, Fauziah Sulaiman, Justin Sentian

Abstract:

Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.

Keywords: Aerosol optical depth, direct normal irradiance, Langley calibration, radiance-based validation, SMARTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
163 Characterization of Polycyclic Aromatic Hydrocarbons in Ambient Air PM2.5 in an Urban Site of Győr, Hungary

Authors: A. Szabó Nagy, J. Szabó, Zs. Csanádi, J. Erdős

Abstract:

In Hungary, the measurement of ambient PM10-bound polycyclic aromatic hydrocarbon (PAH) concentrations is great importance for a number of reasons related to human health, the environment and compliance with European Union legislation. However, the monitoring of PAHs associated with PM2.5 aerosol fraction is still incomplete. Therefore, the main aim of this study was to investigate the concentration levels of PAHs in PM2.5 urban aerosol fraction. PM2.5 and associated PAHs were monitored in November 2014 in an urban site of Győr (Northwest Hungary). The aerosol samples were collected every day for 24-hours over two weeks with a high volume air sampler provided with a PM2.5 cut-off inlet. The levels of 19 PAH compounds associated with PM2.5 aerosol fraction were quantified by a gas chromatographic method. Polluted air quality for PM2.5 (>25 g/m3) was indicated in 50% of the collected samples. The total PAHs concentrations ranged from 2.1 to 37.3 ng/m3 with the mean value of 12.4 ng/m3. Indeno(123-cd)pyrene (IND) and sum of three benzofluoranthene isomers were the most dominant PAH species followed by benzo(ghi)perylene and benzo(a)pyrene (BaP). Using BaP-equivalent approach on the concentration data of carcinogenic PAH species, BaP, and IND contributed the highest carcinogenic exposure equivalent (1.50 and 0.24 ng/m3 on average). A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected that the major source of PAH compounds in the PM2.5 aerosol fraction of Győr during the study period was fossil fuel combustion from automobiles.

Keywords: Air, PM2.5, benzo(a)pyrene, polycyclic aromatic hydrocarbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
162 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell

Authors: M. Hossain, H. P. Zhu, A. B. Yu

Abstract:

This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.

Keywords: Discrete element method, granular rheology, non-spherical particles, regime transition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
161 Optimal Estimation of Surface Reflectance from Landsat TM Visible and Mid Infrared Data over Penang Island

Authors: H. S. Lim, M. Z. MatJafri, K. Abdullah, N. Mohd. Saleh

Abstract:

Retrieval of the surface reflectance is important in the remotely sensed data analysis to obtain the atmospheric reflectance or atmospheric correction. The relationship between visible and mid infrared reflectance over land was investigated and developed in this study. The surface reflectances of the two visible bands were measured using a handheld spectroradiometer collected around Penang Island. In this study, we use the assumption that the 2.1 μm band is not affected by aerosol and it is transparent to most aerosol types (except dust). Therefore the satellite observed signal is the same as the surface signal in 2.1 μm band. The correlation between the surface reflectance measured by the spectroradiometer in the blue and red region and the 2.1 μm observed by the satellite has been established. We investigate five dates of Landsat TM scenes in this study. The finding obtained by this study indicates that the surface reflectance can be retrieved from the 2.1 μm band.

Keywords: Surface Reflectance, Landsat TM, Aerosol, Spectroradiometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
160 3D Objects Indexing with a Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a new method for threedimensional object indexing based on D.A.M.C-S.H.C descriptor (Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients). For this end, we propose a direct calculation of the coefficients of spherical harmonics with perfect precision. The aims of the method are to minimize, the processing time on the 3D objects database and the searching time of similar objects to a request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be tested and prove his efficiency in the search for similar objects in the database in which we have objects with very various and important size.

Keywords: 3D Object indexing, 3D shape descriptor, spherical harmonic, 3D Object similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
159 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.

Keywords: 3D indexation, spherical harmonic, similarity of 3D objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
158 2D Spherical Spaces for Face Relighting under Harsh Illumination

Authors: Amr Almaddah, Sadi Vural, Yasushi Mae, Kenichi Ohara, Tatsuo Arai

Abstract:

In this paper, we propose a robust face relighting technique by using spherical space properties. The proposed method is done for reducing the illumination effects on face recognition. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients. First, an internal training illumination database is generated by computing face albedo and face normal from 2D images under different lighting conditions. Based on the generated database, we analyze the target face pixels and compare them with the training bootstrap by using pre-generated tiles. In this work, practical real time processing speed and small image size were considered when designing the framework. In contrast to other works, our technique requires no 3D face models for the training process and takes a single 2D image as an input. Experimental results on publicly available databases show that the proposed technique works well under severe lighting conditions with significant improvements on the face recognition rates.

Keywords: Face synthesis and recognition, Face illumination recovery, 2D spherical spaces, Vision for graphics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
157 Evaluation of Bacterial Composition of the Aerosol of Selected Abattoirs in Akure, South Western Nigeria

Authors: Funmilola O. Omoya, Joseph O. Obameso, Titus A. Olukibiti

Abstract:

This study was carried out to reveal the bacterial composition of aerosol in the studied abattoirs. Bacteria isolated were characterized according to microbiological standards. Factors such as temperature and distance were considered as variable in this study. The isolation was carried out at different temperatures such as 27oC, 31oC and 29oC and at various distances of 100meters and 200meters away from the slaughter sites. Result obtained showed that strains of Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Lactobacillus alimentarius and Micrococcus sp. were identified. The total viable counts showed that more microorganisms were present in the morning while the least viable count of 388cfu was recorded in the evening period of this study. This study also showed that more microbial loads were recorded the further the distance is to the slaughter site. Conclusively, the array of bacteria isolated suggests that abattoir sites may be a potential source of pathogenic organisms to commuters if located within residential environment.

Keywords: Abattoir, Aerosol, Bacterial Composition, Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
156 Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking

Authors: Osman Acar

Abstract:

Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year.

Keywords: Sun tracking, theoretical sun trajectory, spherical mechanism, inverse kinematic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
155 Development of a Three-Dimensional-Flywheel Robotic System

Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu

Abstract:

In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.

Keywords: Gyro, gimbal, Lagrange equation, spherical robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
154 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels

Authors: O. Altuntaş, A. Güral

Abstract:

The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.

Keywords: Powder metallurgy steel, heat treatment, bainite, spherical cementite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
153 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud

Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova

Abstract:

Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.

Keywords: Cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
152 An Implicit Representation of Spherical Product for Increasing the Shape Variety of Super-quadrics in Implicit Surface Modeling

Authors: Pi-Chung Hsu

Abstract:

Super-quadrics can represent a set of implicit surfaces, which can be used furthermore as primitive surfaces to construct a complex object via Boolean set operations in implicit surface modeling. In fact, super-quadrics were developed to create a parametric surface by performing spherical product on two parametric curves and some of the resulting parametric surfaces were also represented as implicit surfaces. However, because not every parametric curve can be redefined implicitly, this causes only implicit super-elliptic and super-hyperbolic curves are applied to perform spherical product and so only implicit super-ellipsoids and hyperboloids are developed in super-quadrics. To create implicit surfaces with more diverse shapes than super-quadrics, this paper proposes an implicit representation of spherical product, which performs spherical product on two implicit curves like super-quadrics do. By means of the implicit representation, many new implicit curves such as polygonal, star-shaped and rose-shaped curves can be used to develop new implicit surfaces with a greater variety of shapes than super-quadrics, such as polyhedrons, hyper-ellipsoids, superhyperboloids and hyper-toroids containing star-shaped and roseshaped major and minor circles. Besides, the newly developed implicit surfaces can also be used to define new primitive implicit surfaces for constructing a more complex implicit surface in implicit surface modeling.

Keywords: Implicit surfaces, Soft objects, Super-quadrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
151 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere

Authors: Moustafa Osman Mohammed

Abstract:

This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.

Keywords: Air dispersion model, landfill management, spatial analysis, environmental impact and risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
150 Comparison of Response Surface Designs in a Spherical Region

Authors: Boonorm Chomtee, John J. Borkowski

Abstract:

The objective of the research is to study and compare response surface designs: Central composite designs (CCD), Box- Behnken designs (BBD), Small composite designs (SCD), Hybrid designs, and Uniform shell designs (USD) over sets of reduced models when the design is in a spherical region for 3 and 4 design variables. The two optimality criteria ( D and G ) are considered which larger values imply a better design. The comparison of design optimality criteria of the response surface designs across the full second order model and sets of reduced models for 3 and 4 factors based on the two criteria are presented.

Keywords: design optimality criteria, reduced models, response surface design, spherical design region

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
149 K-Means for Spherical Clusters with Large Variance in Sizes

Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.

Keywords: K-Means, Data Clustering, Cluster Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
148 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks

Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari

Abstract:

This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.

Keywords: Iterative learning control, spherical tanks, nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
147 JEWEL: A Cosmological Model Due to the Geometrical Displacement of Galactic Object Like Black, White and Worm Holes

Authors: Francesco Pia

Abstract:

Stellar objects such as black, white and worm holes can be the subject of speculative reasoning if represented in a simplified and geometric form in order to be able to move them; and the cosmological model is one of the most important contents in relation to speculations that can then open the way to other aspects that are not strictly speculative but practical, precisely in the Universe represented by us. In this work, thanks to the hypothesis of a very large number of black, white and worm holes present in our Universe, we imagine that they can be moved; it was therefore thought to align them on a plane and following a redistribution, and the boundaries of this plane were ideally joined, giving rise to a sphere that has the stellar objects examined radially distributed. Thanks to geometrical displacements of these stellar objects that do not make each one of them lose their functionality in the region in which they are located, at the end of the speculative process it is possible to highlight a spherical layer that allows a flow from the outside and inside this spherical shell allowing to relate to other external and internal spherical layers; this aspect that seems useful to describe the universe we live in, for example inside one of the spherical shells just described. The name "Jewel" was chosen because, imagining the speculative process present in this work at the end of steps, the cosmological model tends to be "luminous". This cosmological model includes, for each internal part of a generic layer, different and numerous moments of our universe thanks to an eternal flow inward. There are many aspects to explore, one of these is the connection between the outermost and the inside of the spherical layers.

Keywords: Black hole, cosmological model, cosmology, white hole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
146 Possibilities of Mathematical Modelling of Explosive Substance Aerosol and Vapour Dispersion in the Atmosphere

Authors: A. Bumbová, J. Kellner, J. Navrátil, D. Pluskal, M. Kozubková, E. Kozubek

Abstract:

The paper deals with the possibilities of modelling vapour propagation of explosive substances in the FLUENT software. With regard to very low tensions of explosive substance vapours the experiment has been verified as exemplified by mononitrotoluene. Either constant or time variable meteorological conditions have been used for calculation. Further, it has been verified that the eluent source may be time-dependent and may reflect a real situation or the liberation rate may be constant. The execution of the experiment as well as evaluation were clear and it could also be used for modelling vapour and aerosol propagation of selected explosive substances in the atmospheric boundary layer.

Keywords: atmospheric boundary layer, explosive substances, FLUENT software, modelling of propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664