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Abstract—In this paper, the similarity invariant and the upper
semi-continuity of spherical spectrum, and the spherical spectrum
properties for infinite direct sums of quaternionic operators are
characterized, respectively. As an application of some results
established, a concrete example about the computation of the
spherical spectrum of a compact quaternionic operator with form of
infinite direct sums of quaternionic matrices is also given.
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I. INTRODUCTION

LET H denote the field of quaternions, which contains all
elements of the form q = q0 + q1i + q2j + q3k, where

q0, q1, q2 and q3 are real numbers and i, j, k satisfy:

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Therefore, we see that the multiplication is noncommutative
in H. For q = q0 + q1i+ q2j + q3k ∈ H, write

q = q0 − q1i− q2j − q3k,

| q |=
√

q20 + q21 + q22 + q23 .

Quaternions have become increasingly useful in theory and
applications. For example, the research of quantum mechanics
based on quaternion analysis, quaternion’s applications in
control systems and computer science. For more material on
quaternions and its applications, see S. L. Adler [1], L. P.
Horwitz and L. C. Biedenharn [2], and L. Rodman [3].

As in complex functional analysis, the uniform boundedness
principle, the open map theorem, the closed graph theorem and
the Riesz representation theorem are also valid for quaternionic
operators. However, it is not clear whether we could extend
the definition of spectrum of a bounded linear operator
in a complex Hilbert to a bounded quaternionic operator.
The notion of spherical spectrum of an operator acting on
quaternionic Hilbert spaces has been introduced only few years
ago [4] in the more general context of operators on Banach
modules. R. Ghiloni, V. Moretti and A. Perotti [5] investigated
the continuous functional calculus for quaternionic operator
and also discussed the spherical spectrum and its general
properties. M. Fashandi [6] gave some properties of spherical
spectrum of compact operators on quaternionic Hilbert spaces.
Ghiloni, V. Moretti and A. Perotti [7] also characterized the
spherical spectrum for compact normal quaternionic operators.

Y. W. Guo and F. H Zhai are with the Department of Mathematics, Qingdao
University of Science and Technology, Qingdao, 266061, China (e-mail:
1012508523@qq.com).

By [4] and [5], we know that the spherical spectrum of
quaternionic operator is a non-empty compact subset of H,
the spherical spectrum radius of a quaternionic operator is
not bigger than norm of such quaternionic operator. But the
definition of spherical spectrum is quite different from that
of spectrum in complex Hilbert spaces, it is an interesting
question that if there are other properties of spherical spectrum
of quaternionic operators are similar to the spectral properties
of bounded operators acting on complex Hilbert spaces. The
goal of this paper is to determine the similarity invariant
and the upper semi-continuity of spherical spectrum for
quaternionic operators, and the spherical spectrum of infinite
direct sums of quaternionic operators acting on quaternionic
Hilbert spaces, we obtain Theorem 1 and 2, which are
analogous to some results in [8] and [9], furthermore, as
an application of Theorem 2, we give an example which
is the computation of the spherical spectrum of a compact
quaternionic operator with form of infinite direct sums of 2×2
quaternionic matrices.

II. PRELIMINARIES

In this section, we give some notions, definitions and
properties which are needed in this paper.

Let H denote the linear vector space over H with right
scalar multiplication, H is called a right quaternionic inner
product space if there is a quaternionic scalar product < ·, · >
: H ×H → H satisfying the following three properties:

(1) < f, g > =< g, f > if f, g ∈ H;
(2) if f ∈ H , then < f, f >≥ 0 and f = 0 if < f, f >= 0;
(3) < f, gp + hq >=< f, g > p+ < f, h > q if p, q ∈ H

and f, g, h ∈ H .
The quaternionic norm of an element f ∈ H is defined as

‖f‖ =
√
< f, f >. If H is complete with respect to its natural

distance d(f, g) = ‖f − g‖, we call it is a right quaternionic
Hilbert space. Similarly, the notion of a left quaternionic
Hilbert space has also been defined in [4], here we only focus
on right quaternionic Hilbert spaces.
Definition 1. Let H be a right quaternionic Hilbert space. A
right quaternionic operator is defined as a map T : H → H
such that:

T (fp+ gq) = (Tf)p+ (Tg)q

for all f, g ∈ H and p, q ∈ H.
A right quaternionic operator T is bounded if there exists

K ≥ 0 such that ‖Tf‖ ≤ K‖f‖ for all f ∈ H . ‖T‖ =
sup{‖Tf‖ : f ∈ H and ‖f‖ = 1} is said to be the norm of T .
Write B(H) as the set of all bounded quaternionic operators.

Similar to [4], without confusion, throughout this paper,
the right quaternionic Hilbert space and the right quaternionic
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operator are also called as the quaternionic Hilbert space and
quaternionic operator, respectively.

For T ∈ B(H), let ker(T ) and ran(T ) denote the kernel
and the range of T , respectively. If q ∈ H, we write

Δq(T ) = T 2 − T (q + q) + I|q|2.
Since the map T − Iq is not even a right quaternionic operator,
Colombo [4] have provided a replacement Δq(T ) for the
operator T − Iq and generalized equivalently the notion of
spectrum of a right quaternionic operator, which ia called as
spherical spectrum of T , see following definition 2.
Definition 2 ([4]). Let T ∈ B(H), the spherical resolvent set
of T is the set of ρS(T ) of q ∈ H such that:

(1) Ker(Δq(T )) = {0};
(2) Ran(Δq(T )) is dense in H;
(3) Δq(T )

−1 : Ran(Δq(T )) → D(T 2) is bounded.
The spherical spectrum σs(T ) of T is defined by

σS(T ) = H\ρS(T ).
R. Ghiloni, V. Moretti and A. Perotti [5] pointed that the

spherical spectrum of T can be decomposed into three disjoint
circular (i.e. invariant by conjugation) subsets, that is following
Definition 3.
Definition 3 ([5]). Let T ∈ B(H), then

σS(T ) = σpS(T ) ∪ σrS(T ) ∪ σcS(T ),

where
(a) σpS(T ) is the spherical point spectrum of T :

σpS(T ) = {q ∈ H : Ker(Δq(T )) 	= {0}};
(b) σrS(T ) is the spherical residual spectrum of T :

σrS(T ) = {q ∈ H : Ker(Δq(T )) = {0} and
Ran(Δq(T )) 	= H};

(c) σcS(T ) is the spherical continuous spectrum of T :
σcS(T ) = {q ∈ H : Ker(Δq(T )) = {0} and

Ran(Δq(T )) = H,Δq(T )
−1 /∈ B(H)}.

Let Hn be a quaternionic Hilbert space, Tn ∈ B(Hn), H =
⊕∞

n=1Hn, T = ⊕∞
n=1Tn, that is

H = {f = (fn) : fn ∈ Hn, ‖f‖2H =

∞∑
n=1

‖fn‖2Hn
< +∞}

and Tf = (Tnfn) ∈ H.
In what follows, we list Lemma 1, which proof is similar

to that of the case of a complex linear bounded operator on
complex Hilbert space, here we omit its proof.
Lemma 1. Let {Tn}∞n=1 be a uniformly bounded family of
compact quaternionic operators and T = ⊕∞

n=1Tn ∈ B(H),
then T is a compact quaternionic operator if and only if
limn→∞ ‖Tn‖ = 0.

III. CERTAIN PROPERTIES OF SPHERICAL SPECTRUM OF
QUATERNIONIC OPERATORS

In this section, we show that the spherical spectrum
for quaternionic operator is similarity invariant and upper
semi-continuous, and also describes the spherical spectrum
of infinite direct sums of quaternionic operators acting on
quaternionic Hilbert spaces.

Proposition 1. Let T ∈ B(H), then σS(T ) = σS(X
−1TX)

for any invertible operator X ∈ B(H).
Proof. Note that (q + q) and |q|2 are real numbers, then for
any invertible operator X ∈ B(H)

Δq(X
−1TX) = X−1T 2X −X−1TX(q + q) + I|q|2

= X−1Δq(T )X,
by Definition 3 (a), (b) and (c), we have

σpS(T ) = σpS(X
−1TX), σrS(T ) = σrS(X

−1TX)

and σcS(T ) = σcS(X
−1TX). Hence

σS(T ) = σS(X
−1TX)

for any invertible operator X ∈ B(H). The proof follows.
In the following, we prove the upper semi-continuity of

quaternionic operators, we first give Lemma 2. To be brief,
if fn, f ∈ H and limn→∞ ‖fn−f‖ = 0, we write as fn → f .
In addition, if Tn, T ∈ B(H) and limn→∞ ‖Tn−T‖ = 0, we
also write as Tn → T .
Lemma 2. Let Tn, T ∈ B(H) and qn, q ∈ H. If Δqn(Tn) →
Δq(T ), then

(1). If Ker(Δq(T )) = {0} then Ker(Δqn(Tn)) = {0};
(2). If Ran(Δq(T )) is dense in H , then there exists a

natural number N such that Ran(Δqn(Tn)) is dense in H
if n ≥ N ;

(3). If q ∈ ρS(T ), then there exists a natural number N
such that Δqn(Tn)

−1 : Ran(Δqn(Tn)) → D(T 2
n) is bounded

if n ≥ N .
Proof. (1). Let f ∈ Ker(Δqn(Tn)), then

‖Δq(T )f‖ = ‖Δqn(Tn)f −Δq(T )f‖
≤ |Δqn(Tn)−Δq(T )‖‖f‖.

Since Ker(Δq(T )) = {0} and Δqn(Tn) → Δq(T ), we have
f = 0. Thus Ker(Δqn(Tn)) = {0}.

(2). Let f ∈ H , note that Ran(Δq(T )) is dense in H , for
arbitrary ε > 0, then there exists gε ∈ H such that

Δq(T )gε = f ′
ε and ‖f ′

ε − f‖ < ε/2.
Let Δqn(Tn)gε = f ′′

ε , then
‖f − f ′′

ε ‖ ≤ ‖f − f ′
ε‖+ ‖f ′

ε − f ′′
ε ‖

≤ ‖f − f ′
ε‖+ ‖Δq(T )−Δqn(Tn)‖‖gε‖.

Since Δqn(Tn) → Δq(T ), let n → ∞, we can imply that
there exists a natural number N such that ‖f − f ′′

ε ‖ < ε if
n ≥ N . Whence there exists a natural number N such that
Ran(Δqn(Tn)) is dense in H if n ≥ N .

(3). By Lemma’s assumption and Lemma 2 (1), then

Δqn(Tn)
−1 : Ran(Δqn(Tn)) → D(T 2

n)

is well defined. Since q ∈ ρS(T ), one has that there exists a
constant c > 0 such that c‖h‖ ≤ ‖Δq(T )h‖.

Take h = (Δqn(Tn))
−1f, then

c‖Δqn(Tn)
−1f‖

≤ ‖(Δq(T )−Δqn(Tn)‖‖Δqn(Tn)
−1f‖

+‖Δqn(Tn)Δqn(Tn)
−1‖‖f‖.

According to Δqn(Tn) → Δq(T ), thus there exists a natural
number N such that

‖Δq(T )−Δqn(Tn)‖ < c/2,
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for n ≥ N . By above arguments, for n ≥ N ,

1

2
c‖Δqn(Tn)

−1f‖ ≤ ‖f‖.
Theorem 1. σS(T ) is upper semi-continuous.
Proof. Let Tn ∈ B(H) and Tn → T , let qn ∈ σS(Tn), q ∈ H

and limn→∞ |qn − q| = 0. Since
‖Δqn(Tn)−Δq(T )‖

≤ ‖Tn − T‖‖Tn + T‖+ ‖Tn − T‖|qn|
+ |qn − q|‖T‖+ ‖Tn − T‖|qn|
+ |qn − q|‖T‖+ I(|qn| − |q|)(|qn|+ |q|),

it follows that limn→∞ ‖Δqn(Tn) − Δq(T )‖ = 0. Note that
qn ∈ σS(Tn), by Lemma 2, then q ∈ σS(T ). The proof is
completed.

The following Theorem 2 describes the spherical spectrum
of infinite direct sums of quaternionic operators acting on
quaternionic Hilbert spaces.
Theorem 2. Let {Tn}∞n=1 be a uniformly bounded family of
quaternionic operators and T = ⊕∞

n=1Tn ∈ B(H), then
(1) σpS(T ) = ∪∞

n=1σpS(Tn),
(2) σS(T ) = [∪∞

n=1σS(Tn)] ∪ σ, where
σ = {λ /∈ ∪∞

n=1σS(Tn) : {‖Δq(Tn)
−1‖}∞n=1 is not

uniformly bounded },
(3) σrS(T ) = [∪∞

n=1σrS(Tn)] ∩ (σpS(T ))
c,

(4) σcS(T ) =

[∪∞
n=1σcS(Tn)] ∩ (σpS(T ))

c ∩ [∪∞
n=1σrS(Tn)]

c.

Proof. (1). Since T = ⊕∞
n=1Tn,

Δq(T ) = T 2 − T (q + q) + I|q|2,
Δq(Tn) = T 2

n − Tn(q + q) + I|q|2,
by simple computation, we have

Δq(T ) = ⊕∞
n=1Δq(Tn). (1)

By the equality (1), we have

σpS(T ) ⊂ ∪∞
n=1σpS(Tn).

If q ∈ ∪∞
n=1σpS(Tn), then there exists a natural number n0

such that q ∈ σpS(Tn0
). Again apply the equality (1), then

∪∞
n=1σpS(Tn) ⊂ σpS(T ).

(2). By (1), if q ∈ (∪∞
n=1σS(Tn))\(∪∞

n=1σpS(Tn)), then
there exists a natural number n1 such that

Ran(Δq(Tn1)) 	= Hn1 ,

or

Ran(Δq(Tn1
)) = Hn1

, (Δq(Tn1
))−1 /∈ B(Hn1

).

When Ran(Δq(Tn1
)) 	= Hn1

, then

Ran(Δq(T )) 	= H.

Hence q ∈ σS(T ). When

Ran(Δq(Tn1
)) = Hn1

, (Δq(Tn1
))−1 /∈ B(Hn1

),

since Δq(T )
−1 = ⊕∞

n=1Δq(Tn)
−1, we have Δq(T )

−1 /∈
B(H). Hence

∪∞
n=1σS(Tn) ⊂ σS(T ).

If q ∈ σ, then

Δq(T )
−1 : Ran(Δq(T )) → D(T 2)

is not bounded. Thus σ ⊂ σcS(T ), σ ⊂ σS(T ) and

[∪∞
n=1σS(Tn)] ∪ σ ⊂ σS(T ).

Conversely, if q ∈ σS(T )\σpS(T ), by Lemma 2 (1), then
there exist natural numbers m1,m2 such that

Ran(Δq(Tm1
)) 	= Hm1

(2)

or

Ran(Δq(Tm2
)) = Hm2

, (Δq(Tm2
)−1 /∈ B(Hm2

). (3)

When the inequality (2) is valid, then q ∈ σS(Tm1
).

When the equality (3) is valid, then q ∈ σ. So

σS(T ) ⊂ [∪∞
n=1σS(Tn)] ∪ σ.

Hence
[∪∞

n=1σS(Tn)] ∪ σ = σS(T ).

(3). If q ∈ σrS(T ), then
ker(Δq(T )) = {0} and Ran(Δq(T )) 	= H .

Hence q ∈ (σpS(T ))
c and there exists a natural number n0

such that

Ran(Δq(Tn0)) 	= Hn0 . (4)

By the inequality (4), we have q ∈ ∪∞
n=1σrS(Tn). Thus

σrS(T ) ⊂ [∪∞
n=1σrS(Tn)] ∩ (σpS(T ))

c.

By the Definition 3 (a), then

[∪∞
n=1σrS(Tn)] ∩ (σpS(T ))

c ⊂ σrS(T )

is clear valid. Hence

σrS(T ) = [∪∞
n=1σrS(Tn)] ∩ (σpS(T ))

c.

(4). The proof is analogous to that of (3), Here we omit it.
Thus, the proof of Theorem 2 is completed.
Remark 1. Theorem 1 and 2 are analogous to some results
in [8] and [9] for complex Hilbert spaces.
Corollary 1. Let {Tn}∞n=1 be a uniformly bounded family of
compact quaternionic operators, T = ⊕∞

n=1Tn ∈ B(H). If T
is a compact quaternionic operator, then

σS(T ) = σpS(T ) ∪ {0}.
Proof. For every n, apply [6, Corollary 2] to Tn ∈ B(Hn),

again apply Theorem 2, then

σS(T ) = σpS(T ) ∪ σ.

where σ is same as that of Theorem 2 (2). Since T is a compact
quaternionic operator, by Lemma 1, we have

limn→∞ ‖Tn‖ = 0 and limn→∞ ‖�0(Tn)‖ = 0.
If 0 /∈ σpS(T ), then �0(Tn) is invertible, moreover

lim
n→∞ ‖(�0(Tn))

−1‖ = ∞.
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Hence 0 ∈ σ. By above arguments and [6, Corollary 2], then
σS(T ) = σpS(T ) ∪ {0}. The proof is completed.

As an application of Theorem 2 and Corollary 1, we give
the following example to illustrate the computation of the
spherical spectrum of the direct sums of quaternionic matrices.
Example. Let An = 1

nA, T = ⊕∞
n=1An, where A is a

quaternionic matrix with matrix representation

A =

[
1 0
0 i

]
.

Note that ‖An‖ → 0, n → ∞, by Lemma 1, then T is a
bounded compact quaternionic operator. Since

Δq(An)

= A2
n − 2q0An + |q|2I

=
1

n2
A2 − 2

n
q0A+ |q|2I

=
1

n2
[A2 − 2nq0A+ n2|q|2I

=
1

n2

[
1− 2nq0 + n2|q|2 0

0 −1− 2nq0i+ n2|q|2
]
,

we can imply that if q ∈ σpS(An), then

1− 2nq0 + n2|q|2 = 0 (5)

or

−1− 2nq0i+ n2|q|2 = 0. (6)

By the equality (5), then 1− 2nq0 + n2|q|2

= 1− 2nq0 + n2q20 + n2q21 + n2q22 + n2q23

= (1− nq0)
2 + n2q21 + n2q22 + n2q23

= 0

Hence,

q0 =
1

n
, q1 = q2 = q3 = 0.

By the equality (6), note that −1+n2|q|2 is real, then q0 = 0
and n2|q|2 = 1, that is

q0 = 0, q21 + q22 + q23 =
1

n2
.

By Theorem 2 (1), σpS(T ) =

∪∞
n=1{{

1

n
} ∪ {q : q ∈ H, q0 = 0, q21 + q22 + q23 =

1

n2
}}. (7)

When q /∈ σpS(T ), again use Theorem 2 (1), then

1− 2nq0 + n2|q|2 	= 0

and

−1− 2nq0i+ n2|q|2 	= 0.

By a property of quaternion, write

anq =
1

|1− 2nq0 + n2|q|2|2 (1− 2nq0 + n2|q|2),

bnq =
1

| − 1− 2nq0i+ n2|q|2|2 (−1− 2nq0i+ n2|q|2).

Let

Bn = n2

[
anq 0
0 bnq

]
, (8)

Then

Δq(An)Bn = BnΔq(An) =

[
1 0
0 1

]
. (9)

By the equalities (8) and (9), then
σrS(T ) = ∅ and σcS(T ) = ∅.

Note that
Δq(An)

−1 = Bn,
‖Bn‖ = max{n2|anq|, n2|bnq|},
|anq| = 1

|1−2nq0+n2|q|2| ,
|bnq| = 1

|−1−2nq0i+n2|q|2| ,
by simple computation, if q 	= 0, we can imply that

lim
n→∞n2|anq| = 1

|q|2 , lim
n→∞n2|bnq| = 1

|q|2 .

If q = 0, then

lim
n→∞n2|anq| = ∞, lim

n→∞n2|bnq| = ∞.

Hence limn→∞ ‖Bn‖ = ∞.
By above arguments, we have

σS(T ) = σpS(T ) ∪ {0}, (10)

where σpS(T ) is the same as the equality (7).
Remark 2. In this example, if we consider T as a bounded
operator in complex Hilbert spaces, then its spectrum is

{0} ∪ (∪∞
n=1{

1

n
,
i

n
}). (11)

Combine the equality (11) with (7) and (10), thus the spherical
spectrum of the compact operator T is quite differen from the
spectrum in complex Hilbert spaces.
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