WASET
	%0 Journal Article
	%A Markus Nordlund and  Arkadiusz K. Kuczaj
	%D 2016
	%J International Journal of Chemical and Molecular Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 112, 2016
	%T Modeling Aerosol Formation in an Electrically Heated Tobacco Product
	%U https://publications.waset.org/pdf/10004053
	%V 112
	%X Philip Morris International (PMI) is developing a range
of novel tobacco products with the potential to reduce individual
risk and population harm in comparison to smoking cigarettes.
One of these products is the Tobacco Heating System 2.2 (THS
2.2), (named as the Electrically Heated Tobacco System (EHTS) in
this paper), already commercialized in a number of countries (e.g.,
Japan, Italy, Switzerland, Russia, Portugal and Romania). During use,
the patented EHTS heats a specifically designed tobacco product
(Electrically Heated Tobacco Product (EHTP)) when inserted into
a Holder (heating device). The EHTP contains tobacco material in
the form of a porous plug that undergoes a controlled heating process
to release chemical compounds into vapors, from which an aerosol
is formed during cooling. The aim of this work was to investigate
the aerosol formation characteristics for realistic operating conditions
of the EHTS as well as for relevant gas mixture compositions
measured in the EHTP aerosol consisting mostly of water, glycerol
and nicotine, but also other compounds at much lower concentrations.
The nucleation process taking place in the EHTP during use when
operated in the Holder has therefore been modeled numerically using
an extended Classical Nucleation Theory (CNT) for multicomponent
gas mixtures. Results from the performed simulations demonstrate
that aerosol droplets are formed only in the presence of an aerosol
former being mainly glycerol. Minor compounds in the gas mixture
were not able to reach a supersaturated state alone and therefore
could not generate aerosol droplets from the multicomponent gas
mixture at the operating conditions simulated. For the analytically
characterized aerosol composition and estimated operating conditions
of the EHTS and EHTP, glycerol was shown to be the main aerosol
former triggering the nucleation process in the EHTP. This implies
that according to the CNT, an aerosol former, such as glycerol
needs to be present in the gas mixture for an aerosol to form
under the tested operating conditions. To assess if these conclusions
are sensitive to the initial amount of the minor compounds and to
include and represent the total mass of the aerosol collected during
the analytical aerosol characterization, simulations were carried out
with initial masses of the minor compounds increased by as much
as a factor of 500. Despite this extreme condition, no aerosol
droplets were generated when glycerol, nicotine and water were
treated as inert species and therefore not actively contributing to the
nucleation process. This implies that according to the CNT, an aerosol
cannot be generated without the help of an aerosol former, from
the multicomponent gas mixtures at the compositions and operating
conditions estimated for the EHTP, even if all minor compounds are
released or generated in a single puff.
	%P 373 - 385