Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
Spherical Spectrum Properties of Quaternionic Operators
Authors: Yiwan Guo, Fahui Zhai
Abstract:
In this paper, the similarity invariant and the upper semi-continuity of spherical spectrum, and the spherical spectrum properties for infinite direct sums of quaternionic operators are characterized, respectively. As an application of some results established, a concrete example about the computation of the spherical spectrum of a compact quaternionic operator with form of infinite direct sums of quaternionic matrices is also given.Keywords: Spherical spectrum, Quaternionic operator, Upper semi-continuity, Direct sum of operators.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339129
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420References:
[1] S. L. Adler, Quaternionic quantum mechanics and quantum filed, Oxford university press, vol. 88, 1995.
[2] L. P. Horwitz and L. C. Biedenharn, Quaternion quantum mechanics: Second quantization and gauge fileds, Annals of Physics, vol. 157, 1984, pp. 432-488.
[3] L. Rodman, Topics in Quaternion linear algebra. Princeton Univ.Press, Princeton, New Jersey, 2014.
[4] F. Colombo, I. Sabadini and D. C. Struppa, Noncommutative functional calculus, Progress in mathematics, Birkhauser Basel, vol. 289, 2011.
[5] R. Ghiloni, V. Moretti and A. Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys, vol. 25, 2013, pp.135006-1-135006-83.
[6] M. Fashandi, Compact operators on quanternionic Hilbert spaces, Facta Univ. Ser. Math. Inform, vol. 28 (3), 2013, pp. 249-256.
[7] R. Ghiloni, V. Moretti and A. Perotti, Spectral properties of compact normal quaternionic operators, Trends in Mathematics, 2014, pp. 133-143.
[8] D. A. Herrero. Approximation of Hilbert Space Operators 2nd ed, I, Research Notes in Math., vol. 224. Pitman Books Ltd., Boston-London-Melbourne, 1989.
[9] L. A. Fialow, A note on direct sums of quasinilpotent operators , Proc. Amer. Math. Soc, vol. 46, 1975, pp. 211-223.