
 

 

  
Abstract—Data clustering is an important data exploration 

technique with many applications in data mining. The k-means 
algorithm is well known for its efficiency in clustering large data 
sets. However, this algorithm is suitable for spherical shaped clusters 
of similar sizes and densities. The quality of the resulting clusters 
decreases when the data set contains spherical shaped with large 
variance in sizes. In this paper, we introduce a competent procedure 
to overcome this problem. The proposed method is based on shifting 
the center of the large cluster toward the small cluster, and re-
computing the membership of small cluster points, the experimental 
results reveal that the proposed algorithm produces satisfactory 
results. 
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I. INTRODUCTION 
HE huge amount of data collected and stored in databases 
increases the need for effective analysis methods to use 

the information contained implicitly there. One of the primary 
data analysis tasks is cluster analysis, which helps the user to 
understand the natural grouping or structure in a dataset. 
Therefore, the development of improved clustering algorithms 
has been received much attention. The goal of a clustering 
algorithm is to group the objects of a database into a set of 
meaningful subclasses [3]. 

Clustering is the process of partitioning or grouping a given 
set of patterns into disjoint clusters. This is done such that 
patterns in the same cluster are alike, and patterns belonging 
to two different clusters are different. Clustering has been a 
widely studied problem in a variety of application domains 
including data mining and knowledge discovery [10], data 
compression and vector quantization [11], pattern recognition 
and pattern classification [7], neural networks, artificial 
intelligence, and statistics. 

Existing clustering algorithms can be broadly classified into 
hierarchical and partitioning clustering algorithms [17]. 
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Hierarchical algorithms decompose a database D of n objects 
into several levels of nested partitioning (clustering), 
represented by a dendrogram, i.e., a tree that iteratively splits 
D into smaller subsets until each subset consists of only one 
object. There are two types of hierarchical algorithms; an 
agglomerative that builds the tree from the leaf nodes up, 
whereas a divisive builds the tree from the top down. 
Partitioning algorithms construct a single partition of a 
database D of n objects into a set of k clusters. 

Optimization based partitioning algorithms typically 
represent clusters by a prototype. Objects are assigned to the 
cluster represented by the most similar prototype. An iterative 
control strategy is used to optimize the whole clustering such 
that, the average squared distances of objects to its prototypes 
are minimized. These clustering algorithms are effective in 
determining a good clustering, if the clusters are of convex 
shape, similar size and density, and if their number k can be 
reasonably estimated. Depending on the kind of prototypes, 
one can distinguish k-means, k-modes and k-medoids 
algorithms. In k-means algorithm [8], the prototype, called the 
center; is the mean value of all objects belonging to a cluster. 
The k-modes algorithm [16] extends the k-means paradigm to 
categorical domains. For k-medoids algorithms [7], the 
prototype, called the “medoid”; is the most centrally located 
object in the cluster. The algorithm CLARANS, introduced in 
[20], is an improved k-medoids type algorithm restricting the 
huge search space by using two additional user-supplied 
parameters. It is significantly more efficient than the well-
known k-medoids algorithms PAM and CLARA, presented in 
[7]. 

Among clustering formulations that are based on 
minimizing a formal objective function, perhaps the most 
widely used and studied is k-means clustering. Given a set of 
n data points in real d-dimensional space, Rd, and an integer k, 
the problem is to determine a set of k points in Rd, called 
centers, so as to minimize the mean squared distance from 
each data point to its nearest center. Although the k-means 
method has a number of advantages over other data clustering 
techniques, it also has drawbacks; it converges often at a local 
optimum [2], the final result depends on the initial starting 
centers. Many researchers introduce some methods to select 
good initial starting centers; you can see [5] and [6]. Other 
researchers try to find the best value for the parameter k that 
determines the number of clusters or the value of k must be 
supplied by the user. You can see [22] and [21]. In recent 
years, many improvements have been proposed and 
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implemented in the K-means method; you can see [9]. The k-
means clustering algorithm attempts to determine k partitions 
that optimize a certain criterion function. The average square-
error criterion, defined in (1), is the most commonly used (mi 
is the mean of cluster Ci, n is the number of objects in the 
dataset). 

             2
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The average square-error is a good measure of the within-
cluster variation across all the partitions. Thus, the average 
square error clustering tries to make the k clusters as compact 
and separated as possible, and works well when clusters are 
compact clouds that are rather well separated from one 
another [12]. However, when there are large differences in the 
sizes or geometries of different clusters, as illustrated in 
Figure 1, the square-error method could split large clusters to 
minimize the square-error. The square-error is larger for the 
three separate clusters in left than for the three clusters in 
right, where the big cluster is split into three portions, one of 
which is merged with one of the two smaller clusters. The 
reduction in square-error (in right) is due to the fact that the 
slight reduction in square error due to splitting the large 
cluster is weighted by many data points in the large cluster. 
We propose a competent idea to solve this problem. 

There are very large number of clustering algorithms 
appeared [24], [12], [8], [23], [15], [1] and [25] but, in this 
paper, we focus on the k-means algorithm, a new procedure is 
added to the k-means algorithm makes it able to discover 
clusters with large variance in sizes with small separation 
between clusters. So we will review the k-means and some 
variants of it in section II, discuss the proposed idea in section 
III, present some experimental results in section IV and 
conclude with section V. 

          
Fig. 1 Splitting of a large cluster by k-means algorithm. 

II. RELATED WORK 
The k-means algorithm uses the mean value of the objects 

in a cluster as the cluster center. Suppose that a dataset of n 
objects x1, x2 ,..., xn such that each object is in Rd , the problem 
of finding the minimum variance clustering of the dataset into 
k clusters is that of finding k points mi, I = 1, 2,..., k , in Rd 
such that Equation (1) is minimized. The basic processes of 
the k-means algorithm are: 

1. Initialization: Select a set of k starting points mj , j = 1, 
2,..., k. The selection may be done in random manner or 
according to some heuristic. 

2. Distance calculation: For each object xi, 1≤ I ≤n 

compute its Euclidean distance to each cluster centroid 
mj, 1≤ j ≤k, and then find the closest cluster centroid. 

3. Centroid recalculation: For each 1≤ j ≤k �ecomputed 
cluster centroid mj as the average of the data points 
assigned to it. 

4. Convergence condition: Repeat step 2 and 3 until 
convergence. 

Before the k-means algorithm converges, step2 and step3 
are executed number of times, say j, where the positive integer 
j is known as the number of k-means iterations. The precise 
value of j varies depending on the initial starting clusters 
centroids even on the same data set. So the computational time 
complexity of the algorithm is O(nkj), Where n is the total 
number of objects in the dataset, k is the required number of 
clusters we identified and j is the number of iterations, k ≤ n, 

j≤ n. The k-means algorithm can be thought of as a gradient 
descent procedure which begins at the starting clusters 
centroids and iteratively updates these centroids to minimize 
the objective function in equation (1). It is known [4] that, the 
k-means will always converge to a local minimum. When we 
analyze the k-means we find that, the main advantages of this 
algorithm are; (1) its efficiency, (2) this algorithm is very easy 
to implement and (3) speed of convergence. On the other 
hand, its main drawbacks are (1) the final result depends on 
the initial starting centers, (2) to choose a proper number of 
clusters k is a domain dependent problem, (3) this algorithm is 
applicable only when mean is defined, (4) it is sensitive to 
outliers and (5) this algorithm is Good only for convex 
shaped, similar size and density clusters. For the first four 
disadvantages, there are a lot of efforts have been done to 
overcome these problems, we review some of them, the 
proposed method handles the last problem. 

Several variants of the k-means algorithm have been 
proposed. Their purpose is to improve efficiency or find better 
clusters; improved efficiency is usually accomplished by 
either reducing the number of iterations to reach final 
convergence or reducing the total number of distance 
calculations. Therefore, choosing a good set of initial cluster 
centers is very important for the algorithm. However, it is 
difficult to select a good set of initial cluster centers randomly. 
Bradley and Fayyad [5] have proposed an algorithm for 
refining the initial cluster centers. The main idea of their 
algorithm is to select m subsamples from the data set, apply 
the k-means on each subsample independently, keep the final 
k centers from each subsample provided that empty clusters 
are not be allowed, so they obtain a set contains mk points. 
They apply the k-means on this set m times; at the first time, 
the first k points are the initial centers. At the second time, the 
second k points are the initial centers, and so on. And the 
algorithm returns the best k centers from this set. They use 10 
subsamples from the data set, each of size 1% of the full 
dataset size.  

To choose a proper number of clusters k is a domain 
dependent problem. To resolve this problem, some methods 
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have been proposed to perform k-clustering for various 
numbers of clusters and employ certain criteria for selecting 
the most suitable value of k [21] and [22]. For example in [22] 
the authors depend on the fact that, the k-means method aims 
to minimize the sum of squared distances from all points to 
their cluster centers, this should result in compact clusters. So 
they use the distances of the points from their cluster centers 
to determine whether the clusters are compact or not. For this 
purpose, they use the intra-cluster distance measure, which is 
simply the distance between a point and its cluster center and 
take the average of all of these distances, as defined in 
equation (1). So the intra-cluster distance is the average 
squared error that the k-means method minimizes. Also the 
authors measure the inter-cluster distance, or the distance 
between clusters, which should to be as large as possible. So 
they calculate this as the distance between cluster centers, and 
take the minimum of these values, defined as in equation (2) 

2
int min( ),i jer m m= −  

           1, 2,..., 1i k= − and 1,...,j i k= +                (2) 
 

They take only the minimum of these values as they want the 
smallest of this distance to be maximized, use these measures 
to help them to determine if they have a good clustering, so 
they minimize the ratio between them, defined as in equation 
(3). 

                       
int
int

ravalidity
er

=                                    (3) 

 
Therefore, the clustering which gives a minimum value for the 
validity measure will give the ideal value of k in the k-means 
algorithm. The k-means algorithm is applicable only when 
mean is defined, also this problem is solved by introducing the 
k-modes algorithm [16]. This is an extended version of the k-
means with some modification to be suitable for categorical 
data. The cause that the k-means algorithm can not cluster 
categorical objects is its dissimilarity measure and the method 
used to solve the clustering problem. These barriers have been 
removed by making the following modifications to the k-
means algorithm 

1. Using a simple matching dissimilarity measure for 
categorical objects. 

2. Replacing means of clusters by modes. 
3. Using a frequency-based method to find the modes to 

solve the problem. 
It is known that the k-means is sensitive to outliers, but there 
are some researches have been done to solve this problem. 
Some of them are to detect the outliers [14] first and remove 
them, and then apply a clustering algorithm. In [13] an Outlier 
Removal Clustering (ORC) algorithm is proposed, that 
provides outlier detection and data clustering simultaneously. 
This algorithm consists of two consecutive stages, which are 
repeated several times. In the first stage, they perform K-
means algorithm with multiple initial starting points, and pick 
the best centers, and in the second stage, the algorithm assigns 

an outlyingness factor for each point and iteratively removes 
the points which are far from their clusters centers. This factor 
depends on the point’s distance from the cluster center and the 
most far point from the cluster center. And all points with 
factor greater than specified threshold are considered as 
outliers and removed from the data set. The k-means 
algorithm is good only for convex shaped, similar sizes and 
density clusters. We propose a competent method in the 
following section to overcome this problem. 

III. OUR ALGORITHM (REFINEMENT OF THE FINAL CLUSTERS) 
The k-means algorithm is a popular clustering algorithm 

and has its application in data mining, image segmentation 
[22], bioinformatics and many other fields. This algorithm 
works well with spherical shaped clusters of similar sizes. In 
this section we present how to make this algorithm works well 
with spherical shaped clusters of any size. In our proposed 
method, we find the distances between the means result from 
the k-means algorithm. For each cluster, we calculate its 
average radius of a cluster Ci -by dividing the sum of squared 
error of its points from its representative by the number of 
points assigned to it- as in equation (4). 

           

2 ( , )
( ) i

ip c
i

i

d p m
radius c

n
∈=

∑
                       (4) 

We search for the largest cluster (have the largest average 
radius) and test whether this cluster have some portion merged 
with other clusters or not. At the first time, you can say if the 
summation of the two radiuses is larger than the distance 
between the two clusters, then there is a portion of the large 
cluster merged with the other cluster. So we can redistribute 
the points in the smaller cluster only over the two clusters. But 
this formula is not suitable at all. Since the mean of cluster is 
the center of gravity of the points. Also the average radius (as 
in equation 4) for both clusters is larger than the actual radius, 
and the small cluster attracts portion of points from the large 
cluster, and this leads to enlargement of the actual radius of 
the small cluster, and the mean of the smaller cluster is 
attracted toward the larger cluster, since the objective of the k-
means is to get the smallest value for the squared error 
function in equation (1). So, we use equation (6) to get the 
sum of the two radiuses and compare this value with the 
distance between the two clusters which calculated as in 
equation (5). Where mL and ms are the means of the large and 
the small cluster respectively, d is the dimensionality of the 
data, L and S refer to the large and small cluster respectively. 

 

      2

1
tan ( )

d

li si
i

Meandis ce m m
=

= −∑                   (5) 

( ( ) ( ))*0.80somofradius radius L radius S= +     (6) 
 
If the Sumofradius is larger than or equal to the 

Meandistance and at the same time the ratio between the two 
radius is smaller than 0.90, -this condition is used to insure 
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that there is large difference in size-, then some portion of the 
larger cluster is merged with the smaller one. In this case we 
must redistribute the points in the smaller cluster to return the 
misclassified points to the larger cluster. How can we 
redistribute the points in the smaller cluster? To do this 
operation, we take the average of the two means as new 

mean ( )
2

l sm mAvmean +
=  . This new mean is located in 

the large cluster, and at the mid distance between the two 
cluster centers. We redistribute the points in the small cluster 
over the new mean (Avmean) and it’s original mean (ms). 
Since the means of the two clusters are shifted. So, we use the 
next formula to redistribute the points of the smaller cluster. 
We add a small value to the right hand side of relation 7, since 
we expect a small separation between the two clusters and the 
mean of the smaller cluster is attracted to the larger cluster. 
We multiply the ratio between the two radiuses by 0.80 since 
the radius of the smaller cluster has error percent larger than 
the other cluster 

 
( )*0.8( , ) ( , )

( )i s
radius LDis pi Avmean Dis p m

radius s
≤ +      (7) 

If the formula 7 is true then the point pi is moved to the 
larger cluster, otherwise it remains in the smaller cluster. After 
redistribution of the all points in the smaller cluster, we 
recalculate the new means for the two clusters. All these 
processes are repeated for all clusters. So the final means of 
the proposed method are better than those produced first from 
the k-means algorithm. Fig.2 shows the proposed function 
added to the k-means algorithm to improve the final results. 

 
Fig. 2 Refinement process of the final results of the k-means 

algorithm 
 

IV. EXPERIMENTAL RESULTS 
In this section, we present some experimental evaluation of 

the proposed algorithm, which reveal a great improvement in 
the k-means algorithm when the dataset contains spherical 
shaped clusters with large variance in their sizes. We have 
created many 2-dimensional datasets that contain spherical 
clusters of large different size. These datasets are created 
according to the general equation of circle (x-a)2 + (y-b)2≤r2. 
We present here some of them. All these datasets contain three 
clusters as shown in Figures from 3 to 6. Table I presents the 
exact number of points in each cluster. Also we present the 
exact number of points in each cluster founded by the k-means 
and by our proposed algorithm. 

The experimental results in Table I which sketched by 
figures from 3 to 7 show the great improvement at the final 
clusters discovered by the proposed algorithm. When we 
examine the percent of error in the proposed algorithm, we 
find that, the proposed method produces the exact clusters in 
dataset 1 and dataset 2, because there is a separation between 
clusters. But there is a small error at clusters discovered from 
dataset 3, note that, there is no separation between clusters. 
From Table I you can see that, there are 7 points misclassified. 

 
TABLE I  

COMPARISON BETWEEN THE RESULTS FROM THE K-MEANS AND OUR 
PROPOSED METHOD 

Data 
set 

Exact 
clusters 

k-mean 
clusters 

k-means 
error 

Proposed 
clusters 

1815 1210 1815 
683 973 683 Set1 
660 975 

605 
points 

 660 
1582 1025 1582 
703 1015 703 Set2 
642 887 

557 
points 

 642 
1582 1043 1585 
557 816 552 Set3 
522 802 

539 
points 

 524 
2129 1306 2067 
505 916 534 Set4 
510 922 

823 
points 

543 
2363 1417 1417 
522 992 992 Set5 
524 1000 

946 
points 

1000 
 
Fig. 5 shows that our proposed algorithm not produces the 

exact clusters, this is occurred because the two centers of the 
two small clusters lie on the border of them, they are very 
close to the large cluster. But the result is better than the 
original result from the k-means. So as the large cluster 
become more densely the quality of our proposed algorithm 
degenerates, because the high density of points in large cluster 
attract the centers of the other smaller clusters, and the 
situation become more complex when the center of the smaller 
cluster belong to the larger one as in Fig. 6 which shows that 
both algorithms produce the same result, in other words, as the 
density of the larger cluster increase and the density difference 
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between the two clusters increase and the density of smaller 
cluster decrease, both algorithms produce the same result. Fig. 
7 summaries our experimental results. 

 
Fig. 3 Resulting Clusters from the k-means algorithm (datasets 1, 2 

and 3) 
 

 
Fig. 4 Resulting Clusters from the proposed method (datasets 1, 2 

and 3) 
 
 

 
 

Fig. 5 k-means Result (on left), proposed method’s result (on right) 
(dataset 4) 

 

 
 
 

Fig. 6 Both algorithms produce the same result, because the three 
centers lie on the large cluster. and the difference between the 

average radius is very small; i.e the clusters seems to have equal 
radius (dataset 5) 

 

A. Time Complexity 
As we know that, the time complexity of the k-means 

algorithm is O(nkj); where n is the number of data points in 
the dataset, k is the number of clusters and j is the number of 

iterations. Since we use the k-means and then we apply our 
procedure, so the time complexity is equal to the summation 
of the two times. At first, our method find the distances 
between the pair wise k clusters so this operation requires 
O(k2). Then we search for the largest cluster, that requires 
O(k), at most the points of 3 or 4 clusters will be redistributed 
over their means and the average means, this operation 
requires O(2mh); 2 is the two means, m is the number of 
points in the cluster and h is the number of clusters we 
redistribute their points. Since we redistribute the points in the 

smaller cluster so
2
nm
k

< , and h is very small, we can say h 

= 4 at most. So the time complexity added to the k-means is 
very small compared with the time complexity of the k-means 
itself. So, the time is O(k2+ mh), k<n. At the end the time 
complexity is O(nkj +k2 +mh). 

V. CONCLUSION 
In this paper, we have described a new procedure added to 

the end of the k-means clustering algorithm. The objective of 
this procedure is to refine the results of the k-means. This 
procedure is optional and it is strongly recommended to use it 
after the k-means especially when the dataset contains 
spherical shaped clusters with large difference in their sizes. 
Our experimental results are evidence that our proposed 
method improve the quality of the resulting clusters. our 
proposed algorithm produce the same result as k-means when 
the centers of the smaller clusters lie out of them, because in 
this situation the clusters seem to have very small difference 
between their radius. In future work we will search for more 
robust solution for this problem. 
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Fig. 7 The efficiency of the proposed method 
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