Search results for: Rubber clearance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 147

Search results for: Rubber clearance

87 Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling

Authors: Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio

Abstract:

In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.

Keywords: Clearance joints, Contact mechanics, Contact dynamics, Internal cylindrical contact, Multibody dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
86 Analytical and Finite Element Analysis of Hydroforming Deep Drawing Process

Authors: Maziar Ramezani, Thomas Neitzert

Abstract:

This paper gives an overview of a deep drawing process by pressurized liquid medium separated from the sheet by a rubber diaphragm. Hydroforming deep drawing processing of sheet metal parts provides a number of advantages over conventional techniques. It generally increases the depth to diameter ratio possible in cup drawing and minimizes the thickness variation of the drawn cup. To explore the deformation mechanism, analytical and numerical simulations are used for analyzing the drawing process of an AA6061-T4 blank. The effects of key process parameters such as coefficient of friction, initial thickness of the blank and radius between cup wall and flange are investigated analytically and numerically. The simulated results were in good agreement with the results of the analytical model. According to finite element simulations, the hydroforming deep drawing method provides a more uniform thickness distribution compared to conventional deep drawing and decreases the risk of tearing during the process.

Keywords: Deep drawing, Hydroforming, Rubber diaphragm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2859
85 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
84 Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation

Authors: Ju-Na Hwang, Yong-Jun Park, Min-Hae Park, Kee-Joe Lim

Abstract:

Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, high voltage direct current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of liquid silicone rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to nano-aluminum trihydrate (ATH) were confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nanofiller dispersion state. The LSR nanocomposite was prepared by compounding LSR filled nano-sized ATH filler. The dc insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without a filler. 

Keywords: Liquid silicone rubber, Nanocomposite, Nano-ATH, HVDC insulation, Cable joints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
83 Nonlinear Seismic Dynamic Response of Continuous Curved Highway Viaducts with Different Bearing Supports

Authors: Rinna Tanaka, Carlos Mendez Galindo, Toshiro Hayashikawa

Abstract:

The results show that the bridge equipped with seismic isolation bearing system shows a high amount of energy dissipation. The purpose of the present study is to analyze the overall performance of continuous curved highway viaducts with different bearing supports, with an emphasis on the effectiveness of seismic isolation based on lead rubber bearing and hedge reaction force bearing system consisted of friction sliding bearing and rubber bearing. The bridge seismic performance has been evaluated on six different cases with six bearing models. The effects of the different arrangement of bearing on the deck superstructure displacements, the seismic damage at the bottom of the piers, movement track at the pier-s top and the total and strain energies absorbed by the structure are evaluated. In conclusion, the results provide sufficient evidence of the effectiveness on the use of seismic isolation on steel curved highway bridges.

Keywords: Curved highway viaducts, non-linear dynamic response, seismic damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
82 Nanobiocomposites with Enhanced Cell Proliferation and Improved Mechanical Properties Based on Organomodified-Nanoclay and Silicone Rubber

Authors: M. S. Hosseini, M. Tazzoli-Shadpour, I. Amjadi, A. A. Katbab, E. Jaefargholi-Rangraz

Abstract:

Bionanotechnology deals with nanoscopic interactions between nanostructured materials and biological systems. Polymer nanocomposites with optimized biological activity have attracted great attention. Nanoclay is considered as reinforcing nanofiller in manufacturing of high performance nanocomposites. In current study, organomodified-nanoclay with negatively charged silicate layers was incorporated into biomedical grade silicone rubber. Nanoparticle loading has been tailored to enhance cell behavior. Addition of nanoparticles led to improved mechanical properties of substrate with enhanced strength and stiffness while no toxic effects was observed. Results indicated improved viability and proliferation of cells by addition of nanofillers. The improved mechanical properties of the matrix result in proper cell response through adjustment and arrangement of cytoskeletal fibers. Results can be applied in tissue engineering when enhanced substrates are required for improvement of cell behavior for in vivo applications.

Keywords: Biocompatibility, Composite, Organomodified- Nanoclay, Proliferation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
81 Structure and Activity Research of Hydrocarbons Refining Catalysts Based on Wastes of Ferroalloy Production

Authors: Zhanat Shomanova, Ruslan Safarov, Yuri Nosenko, Zheneta Tashmuchambetova, Alima Zharmagambetova

Abstract:

An effective way of utilization of ferroalloy production wastes is preparing hydrocarbon refining catalysts from them. It is possible due to accordable transition metals containing in the wastes. In the work, we are presenting the results on elemental analysis of sludge samples from Aksu ferroalloy plant (Aksu, Kazakhstan), method of catalysts preparing, results of physical-chemical analysis of obtained catalysts (X-ray analysis, electron microscopy, the BET method etc.), results of using the catalysts in some hydrocarbons refining processes such as hydrocracking of rubber waste, cracking of gasoil, oxidation of cyclohexane. The main results of catalytic activity research are: a) In hydrocracking of rubber waste 64.9% of liquid products were fuel fractions; b) In cracking of gasoil conversion was 51% and selectivity by liquid products was 99%; c) In oxidation of cyclohexane the maximal product yield 87.9% and selectivity by cyclohexanol 93.0% were achieved.

Keywords: Catalyst, cyclohexane oxidation, ferroalloy production waste, gasoil cracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
80 The Effect of Loperamide and Fentanyl on the Distribution Kinetics of Verapamil in the Lung and Brain in Sprague Dawley Rats

Authors: Iman A. Elkiweri, Ph.D, Martha C. Tissot van Patot, Ph.D., Yan Ling Zhang, Ph.D., Uwe Christians, Ph.D., Thomas K. Henthorn, M.D.,

Abstract:

Verapamil has been shown to inhibit fentanyl uptake in vitro and is a potent P-glycoprotein inhibitor. Tissue partitioning of loperamide, a commercially available opioid, is closely controlled by the P-gp efflux transporter. The following studies were designed to evaluate the effect of opioids on verapamil partitioning in the lung and brain, in vivo. Opioid (fentanyl or loperamide) was administered by intravenous infusion to Sprague Dawley rats alone or in combination with verapamil and plasma, with lung and brain tissues were collected at 1, 5, 6, 8, 10 and 60 minutes. Drug dispositions were modeled by recirculatory pharmacokinetic models. Fentanyl slightly increased the verapamil lung (PL) partition coefficient yet decreased the brain (PB) partition coefficient. Furthermore, loperamide significantly increased PLand PB. Fentanyl reduced the verapamil volume of distribution (V1) and verapamil elimination clearance (ClE). Fentanyl decreased verapamil brain partitioning, yet increased verapamil lung partitioning. Also, loperamide increased lung and brain partitioning in vivo. These results suggest that verapamil and fentanyl may be substrates of an unidentified inward transporter in brain tissue and confirm that verapamil and loperamide are substrates of the efflux transporter P-gp.

Keywords: Efflux transporter, elimination clearance, partition coefficient, verapamil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
79 A Case Study on Performance of Isolated Bridges under Near-Fault Ground Motion

Authors: Daniele Losanno, H. A. Hadad, Giorgio Serino

Abstract:

This paper presents a numerical investigation on the seismic performance of a benchmark bridge with different optimal isolation systems under near fault ground motion. Usually, very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. Hence, near-fault ground motions are most likely to affect either structures with long natural period range like isolated structures or structures sensitive to velocity content such as viscously damped structures. The work is aimed at analyzing the seismic performance of a three-span continuous bridge designed with different isolation systems having different levels of damping. The case study was analyzed in different configurations including: (a) simply supported, (b) isolated with lead rubber bearings (LRBs), (c) isolated with rubber isolators and 10% classical damping (HDLRBs), and (d) isolated with rubber isolators and 70% supplemental damping ratio. Case (d) represents an alternative control strategy that combines the effect of seismic isolation with additional supplemental damping trying to take advantages from both solutions. The bridge is modeled in SAP2000 and solved by time history direct-integration analyses under a set of six recorded near-fault ground motions. In addition to this, a set of analysis under Italian code provided seismic action is also conducted, in order to evaluate the effectiveness of the suggested optimal control strategies under far field seismic action. Results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution for both mitigation of displacement demand at the isolation level and base shear reduction in the piers also in case of near fault ground motion.

Keywords: Isolated bridges, optimal design, near-fault motion, supplemental damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
78 Finite Element Analysis of Ball-Joint Boots under Environmental and Endurance Tests

Authors: Young-Doo Kwon, Seong-Hwa Jun, Dong-Jin Lee, Hyung-Seok Lee

Abstract:

Ball joints support and guide certain automotive parts that move relative to the frame of the vehicle. Such ball joints are covered and protected from dust, mud, and other interfering materials by ball-joint boots made of rubber—a flexible and near-incompressible material. The boots may experience twisting and bending deformations because of the motion of the joint arm. Thus, environmental and endurance tests of ball-joint boots apply both bending and twisting deformations. In this study, environmental and endurance testing was simulated via the finite element method performed by using a commercial software package. The ranges of principal stress and principal strain values that are known to directly affect the fatigue lives of the parts were sought. By defining these ranges, the number of iterative tests and modifications of the materials and dimensions of the boot can be decreased. Therefore, instead of performing actual part tests, manufacturers can perform standard fatigue tests in trials of different materials by applying only the defined range of stress or strain values.

Keywords: Boot, endurance tests, rubber, FEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
77 Oil Palm Empty Fruit Bunch as a New Organic Filler for Electrical Tree Inhibition

Authors: M. H. Ahmad, A. A. A. Jamil, H. Ahmad, M. A. M. Piah, A. Darus, Y. Z. Arief, N. Bashir

Abstract:

The use of synthetic retardants in polymeric insulated cables is not uncommon in the high voltage engineering to study electrical treeing phenomenon. However few studies on organic materials for the same investigation have been carried. .This paper describes the study on the effects of Oil Palm Empty Fruit Bunch (OPEFB) microfiller on the tree initiation and propagation in silicone rubber with different weight percentages (wt %) of filler to insulation bulk material. The weight percentages used were 0 wt % and 1 wt % respectively. It was found that the OPEFB retards the propagation of the electrical treeing development. For tree inception study, the addition of 1(wt %) OPEFB has increase the tree inception voltage of silicone rubber. So, OPEFB is a potential retardant to the initiation and growth of electrical treeing occurring in polymeric materials for high voltage application. However more studies on the effects of physical and electrical properties of OPEFB as a tree retardant material are required.

Keywords: Oil palm empty fruit bunch, electrical tree, siliconerubber, fillers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
76 Permanent Reduction of Arc Flash Energy to Safe Limit on Line Side of 480 Volt Switchgear Incomer Breaker

Authors: Md Abid Khan

Abstract:

A recognized engineering challenge is related to personnel protection from fatal arc flash incident energy in the line side of the 480-volt switchgears incomer breakers during maintenance activities. The incident energy is typically high due to slow fault clearance and it can be higher than the available personnel protective equipment (PPE) ratings. A fault on the line side of the 480 Volt breaker is cleared by breakers or fuses in the upstream higher voltage system (4160 Volt or higher). The current reflection in the higher voltage upstream system for a fault in the 480-volt switchgear is low, the clearance time is slower and the inversely proportional incident energy is hence higher. The installation of overcurrent protection at 480-volt system upstream of the incomer breaker will operate fast enough and trips the upstream higher voltage breaker when a fault develops at the incomer breaker. Therefore, fault current reduction as reflected in the upstream higher voltage system is eliminated. Since the fast overcurrent protection is permanently installed, it is always functional, do not require human interventions and eliminates exposure to human errors. It is installed at the maintenance activity location and its operations can be locally monitored by craftsmen during maintenance activities.

Keywords: Arc flash, mitigation, maintenance switch, energy level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 445
75 Pleurotus Ostreatus for Durability Test of Rubber and Sengon Woods using Indonesian National Standard and Japanese Standard Methods

Authors: Elis N. Herliyana , Kunio Tsunoda, Yusuf S. Hadi, Arinana, Dewi A. Natalia

Abstract:

This study aims to determine the level of resistance of Hevea brasiliensis and Paraserianthes falcataria (synonym: Falcataria molucana) against wood rot fungi Pleurotus ostreatus based on Indonesian standard SNI 01.7207-2006 and Japanese standard JIS K 1571-2004. The variables measured were visual appearance and weight loss percentage of wood based on longitudinal and cross section fiber directions of rubber wood and sengon wood. Measurement of oven dry weight loss of wood samples performed after 12 weeks incubation. Replication performed was 10 times at each treatment combination. The results based on SNI 01.7207-2006, weight loss value of H. brasiliensis and P. falcataria wood with fiber direction longitudinal were 23,12 and 22,25% respectively and cross section were 20,77 and 18,76% respectively, and all were classified to resistance class IV (no resistance). The results based on JIS K 1571-2004, weight loss value of both woods with fiber direction cross section were 10,95 and 14,20% respectively.

Keywords: H. brasiliensis wood, Natural durability, P. falcataria wood, P. ostreatus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021
74 Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh

Authors: Ali M. Babalghaith, Hamad A. Alsoliman, Abdulrahman S. Al-Suhaibani

Abstract:

Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ).

Keywords: Polymer modified asphalt, rheological properties, SBS, crumb rubber, EE-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
73 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
72 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
71 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labor shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: Disturbance observer, Pneumatic balloon, Predictive functional control, Rubber artificial muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
70 Protective Effect of L-Carnitine against Gentamicin-Induced Nephrotoxicity in Rats

Authors: Mohamed F. Ahmed, Mabruka S. Elashheb, Fatma M. Ben Rabha

Abstract:

This study aimed to determine the possible protective effects of L‐carnitine against gentamicin‐induced nephrotoxicity. Forty male albino rats were divided into 4 groups (10 rats each); Group 1: normal control, group 2: induced nephrotoxicity (gentamicin 50 mg/kg/day S.C; 8 days), group 3: treated with L‐ carnitine (40 mg/kg/d SC for 12 days) and group 4: treated with L‐ carnitine 4 days before and for 8 days in concomitant with gentamicin. Gentamicin‐induced nephrotoxicity (group 2): caused significant increase in serum urea, creatinine, urinary N‐acetyl‐B‐D‐ glucosaminidase (NAG), gamma glutamyl transpeptidase (GGT), urinary total protein and kidney tissue malondialdehyde (MDA) with significant decrease in serum superoxide dismutase (SOD), serum catalase and creatinine clearance and marked tubular necrosis in the proximal convoluted tubules with interruption in the basement membrane around the necrotic tubule compared to the normal control group. L‐carnitine 4 days before and for 8 days in concomitant with gentamicin (group 4) offered marked decrease in serum urea, serum creatinine, urinary NAG, urinary GGT, urinary proteins and kidney tissue MDA, with marked increase in serum SOD, serum catalase and creatinine clearance with marked improvement in the tubular damage compared to gentamicin‐induced nephrotoxicity group. L‐carnitine administered for 12 days produced no change in the parameters mentioned above as compared to the normal control group. In conclusion: L‐carnitine could reduce most of the biochemical parameters and also improve the histopathological features of kidney asscociated with gentamicin induced‐nephrotoxicity. 

Keywords: Gentamicin, kidney disease, L‐carnitine, nephrotoxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
69 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
68 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber

Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay

Abstract:

Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.

Keywords: Asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanized.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
67 Characterization of the Near-Wake of an Ahmed Body Profile

Authors: Stéphanie Pellerin, Bérengére Podvin, Luc Pastur

Abstract:

In aerovehicles context, the flow around an Ahmed body profile is simulated using the velocity-vorticity formulation of the Navier-Stokes equations, associated to a penalization method for solids and Large Eddy Simulation for turbulence. The study focuses both on the ground influence on the flow and on the dissymetry of the wake, observed for a ground clearance greater than 10% of the body height H. Unsteady and mean flows are presented and analyzed. POD study completes the analysis and gives information on the most energetic structures of the flow.

Keywords: Ahmed body, bi-stability, LES, near wake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
66 Trajectory Tracking Using Artificial Potential Fields

Authors: Krishna S. Raghuwaiya, Shonal Singh, Jito Vanualailai

Abstract:

In this paper, the trajectory tracking problem for carlike mobile robots have been studied. The system comprises of a leader and a follower robot. The purpose is to control the follower so that the leader-s trajectory is tracked with arbitrary desired clearance to avoid inter-robot collision while navigating in a terrain with obstacles. A set of artificial potential field functions is proposed using the Direct Method of Lyapunov for the avoidance of obstacles and attraction to their designated targets. Simulation results prove the efficiency of our control technique.

Keywords: Control, Trajectory Tracking, Lyapunov.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
65 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: Expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
64 A Review on Application of Waste Tire in Concrete

Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su

Abstract:

The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.

Keywords: Waste rubber aggregates, Microstructure, Treatment methods, Size and content effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4607
63 An Initial Assessment of the Potential Contribution of ‘Community Empowerment’ to Mitigating the Drivers of Deforestation and Forest Degradation, in Giam Siak Kecil-Bukit Batu Biosphere Reserve

Authors: A. Sunkar, Y. Santosa, S. B. Rushayati

Abstract:

Indonesia has experienced annual forest fires that have rapidly destroyed and degraded its forests. Fires in the peat swamp forests of Riau Province, have set the stage for problems to worsen, this being the ecosystem most prone to fires (which are also the most difficult, to extinguish). Despite various efforts to curb deforestation, and forest degradation processes, severe forest fires are still occurring. To find an effective solution, the basic causes of the problems must be identified. It is therefore critical to have an indepth understanding of the underlying causal factors that have contributed to deforestation and forest degradation as a whole, in order to attain reductions in their rates. An assessment of the drivers of deforestation and forest degradation was carried out, in order to design and implement measures that could slow these destructive processes. Research was conducted in Giam Siak Kecil–Bukit Batu Biosphere Reserve (GSKBB BR), in the Riau Province of Sumatera, Indonesia. A biosphere reserve was selected as the study site because such reserves aim to reconcile conservation with sustainable development. A biosphere reserve should promote a range of local human activities, together with development values that are in line spatially and economically with the area conservation values, through use of a zoning system. Moreover, GSKBB BR is an area with vast peatlands, and is experiencing forest fires annually. Various factors were analysed to assess the drivers of deforestation and forest degradation in GSKBB BR; data were collected from focus group discussions with stakeholders, key informant interviews with key stakeholders, field observation and a literature review. Landsat satellite imagery was used to map forest-cover changes for various periods. Analysis of landsat images, taken during the period 2010-2014, revealed that within the non-protected area of core zone, there was a trend towards decreasing peat swamp forest areas, increasing land clearance, and increasing areas of community oilpalm and rubber plantations. Fire was used for land clearing and most of the forest fires occurred in the most populous area (the transition area). The study found a relationship between the deforested/ degraded areas, and certain distance variables, i.e. distance from roads, villages and the borders between the core area and the buffer zone. The further the distance from the core area of the reserve, the higher was the degree of deforestation and forest degradation. Research findings suggested that agricultural expansion may be the direct cause of deforestation and forest degradation in the reserve, whereas socio-economic factors were the underlying driver of forest cover changes; such factors consisting of a combination of sociocultural, infrastructural, technological, institutional (policy and governance), demographic (population pressure) and economic (market demand) considerations. These findings indicated that local factors/problems were the critical causes of deforestation and degradation in GSKBB BR. This research therefore concluded that reductions in deforestation and forest degradation in GSKBB BR could be achieved through ‘local actor’-tailored approaches such as community empowerment.

Keywords: Actor-led solution, community empowerment, drivers of deforestation and forest degradation, Giam Siak Kecil– Bukit Batu Biosphere Reserve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
62 Smart Spoiler for Race Car

Authors: M.H. Djavareshkian, A. Esmaeli

Abstract:

A pressure-based implicit procedure to solve Navier- Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is used to simulate flow around the smart and conventional flaps of spoiler under the ground effect. Cantilever beam with uniformly varying load with roller support at the free end is considered for smart flaps. The boundedness criteria for this procedure are determined from a Normalized Variable diagram (NVD) scheme. The procedure incorporates es the k -ε eddyviscosity turbulence model. The method is first validated against experimental data. Then, the algorithm is applied for turbulent aerodynamic flows around a spoiler section with smart and conventional flaps for different attack angle, flap angle and ground clearance where the results of two flaps are compared.

Keywords: Smart spoiler, Ground Effect, Flap, Aerodynamic coefficients, Race car.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
61 The Comparisons of Average Outgoing Quality Limit between the MCSP-2-C and MCSP-C

Authors: P. Guayjarernpanishkand, T. Mayureesawan

Abstract:

This paper presents a comparison of average outgoing quality limit of the MCSP-2-C plan with MCSP-C when MCSP-2-C has been developed from MCSP-C. The parameters used in MCSP-2- C are: i (the clearance number), c (the acceptance number), m (the number of conforming units to be found before allowing c nonconforming units in the sampling inspection), f1 and f2 (the sampling frequency at level 1 and 2, respectively). The average outgoing quality limit (AOQL) values from two plans were compared and we found that for all sets of i, r, and c values, MCSP-2-C gives higher values than MCSP-C. For all sets of i, r, and c values, the average outgoing quality values of MCSP-C and MCSP-2-C are similar when p is low or high but is difference when p is moderate.

Keywords: average outgoing quality, average outgoing quality limit, continuous sampling plan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
60 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: Base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
59 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: Natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
58 Simulation of Large Deformations of Rubbers by the RKPM Method

Authors: M. Foroutan, H. Dalayeli, M. Sadeghian

Abstract:

In this paper processes including large deformations of a rubber with hyperelastic material behavior are simulated by the RKPM method. Due to the loss of kronecker delta properties in the mesh less shape functions, the imposition of essential boundary conditions consumes significant CPU time in mesh free computations. In this work transformation method is used for imposition of essential boundary conditions. A RKPM material shape function is used in this analysis. The support of the material shape functions covers the same set of particles during material deformation and hence the transformation matrix is formed only once at the initial stages. A computer program in MATLAB is developed for simulations.

Keywords: RKPM, large deformations, transformation, essentialboundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850