Search results for: Radiative transfer equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2196

Search results for: Radiative transfer equation

1986 A Comparison of Some Splines-Based Methods for the One-dimensional Heat Equation

Authors: Joan Goh, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

In this paper, collocation based cubic B-spline and extended cubic uniform B-spline method are considered for solving one-dimensional heat equation with a nonlocal initial condition. Finite difference and θ-weighted scheme is used for time and space discretization respectively. The stability of the method is analyzed by the Von Neumann method. Accuracy of the methods is illustrated with an example. The numerical results are obtained and compared with the analytical solutions.

Keywords: Heat equation, Collocation based, Cubic Bspline, Extended cubic uniform B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1985 Performance Evaluation of Data Transfer Protocol GridFTP for Grid Computing

Authors: Hiroyuki Ohsaki, Makoto Imase

Abstract:

In Grid computing, a data transfer protocol called GridFTP has been widely used for efficiently transferring a large volume of data. Currently, two versions of GridFTP protocols, GridFTP version 1 (GridFTP v1) and GridFTP version 2 (GridFTP v2), have been proposed in the GGF. GridFTP v2 supports several advanced features such as data streaming, dynamic resource allocation, and checksum transfer, by defining a transfer mode called X-block mode. However, in the literature, effectiveness of GridFTP v2 has not been fully investigated. In this paper, we therefore quantitatively evaluate performance of GridFTP v1 and GridFTP v2 using mathematical analysis and simulation experiments. We reveal the performance limitation of GridFTP v1, and quantitatively show effectiveness of GridFTP v2. Through several numerical examples, we show that by utilizing the data streaming feature, the average file transfer time of GridFTP v2 is significantly smaller than that of GridFTP v1.

Keywords: Grid Computing, GridFTP, Performance Evaluation, Queuing Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
1984 Numerical Calculation of Heat Transfer in Water Heater

Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala

Abstract:

This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. That result shows that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.

Keywords: Heat exchanger, heat transfer rate, numerical calculation, thermal images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794
1983 New Effect of Duct Cross Sectional Shape on the Nanofluid Flow Heat Transfer

Authors: Mohammad R. Salimpour, Amir Dehshiri

Abstract:

In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. we check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enchantment than conduit with circular cross section.

Keywords: Nanofluid, cross-sectional shape, TiO2, convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
1982 Effect of the Rise/Span Ratio of a Spherical Cap Shell on the Buckling Load

Authors: Peter N. Khakina, Mohammed I. Ali, Enchun Zhu, Huazhang Zhou, Baydaa H. Moula

Abstract:

Rise/span ratio has been mentioned as one of the reasons which contribute to the lower buckling load as compared to the Classical theory buckling load but this ratio has not been quantified in the equation. The purpose of this study was to determine a more realistic buckling load by quantifying the effect of the rise/span ratio because experiments have shown that the Classical theory overestimates the load. The buckling load equation was derived based on the theorem of work done and strain energy. Thereafter, finite element modeling and simulation using ABAQUS was done to determine the variables that determine the constant in the derived equation. The rise/span was found to be the determining factor of the constant in the buckling load equation. The derived buckling load correlates closely to the load obtained from experiments.

Keywords: Buckling, Finite element, Rise/span ratio, Sphericalcap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1981 The Influence of Pad Thermal Diffusivity over Heat Transfer into the PCBs Structure

Authors: Mihai Brânzei, Ioan Plotog, Ion Pencea

Abstract:

The Pads have unique values of thermophysical properties (THP) having important contribution over heat transfer into the PCB structure. Materials with high thermal diffusivity (TD) rapidly adjust their temperature to that of their surroundings, because the HT is quick in compare to their volumetric heat capacity (VHC). In the paper is presenting the diffusivity tests (ASTM E1461 flash method) for PCBs with different core materials. In the experiments, the multilayer structure of PCBA was taken into consideration, an equivalent property referring to each of experimental structure be practically measured. Concerning to entire structure, the THP emphasize the major contribution of substrate in establishing of reflow soldering process (RSP) heat transfer necessities. This conclusion offer practical solution for heat transfer time constant calculation as function of thickness and substrate material diffusivity with an acceptable error estimation.

Keywords: heat transfer time constant, packaging, reflowsoldering process, thermal diffusivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
1980 Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Authors: S. Iijima, K. Nakayama, D. Kuchar, M. Kubota, H. Matsuda

Abstract:

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Keywords: Regenerative Heat Exchange, Self Combustion, Toluene, Volatile Organic Compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
1979 Photoluminescence Study of Erbium-Mixed Alkylated Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Alkylated silicon nanocrystals (C11-SiNCs) were prepared successfully by galvanostatic etching of p-Si(100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract C11-SiNCs from porous silicon. Erbium trichloride was added to alkylated SiNCs using a simple mixing chemical route. To the best of our knowledge, this is the first investigation on mixing SiNCs with erbium ions (III) by this chemical method. The chemical characterization of C11-SiNCs and their mixtures with Er3+(Er/C11-SiNCs) were carried out using X-ray photoemission spectroscopy (XPS). The optical properties of C11- SiNCs and their mixtures with Er3+ were investigated using Raman spectroscopy and photoluminescence (PL). The erbium mixed alkylated SiNCs shows an orange PL emission peak at around 595 nm that originates from radiative recombination of Si. Er/C11-SiNCs mixture also exhibits a weak PL emission peak at 1536 nm that originates from the intra-4f transition in erbium ions (Er3+). The PL peak of Si in Er/C11-SiNCs mixture is increased in the intensity up to three times as compared to pure C11-SiNCs. The collected data suggest that this chemical mixing route leads instead to a transfer of energy from erbium ions to alkylated SiNCs.

Keywords: Photoluminescence, Silicon Nanocrystals, Erbium, Raman Spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
1978 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: Nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
1977 Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow

Authors: Jason P. Michaud, Connor P. Speer, David A. Miller, David S. Nobes

Abstract:

An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of  50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.

Keywords: Finned-tube heat exchangers, radiators, heat transfer correlations, pulsatile flow, computer radiators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
1976 Existence of Solution for Singular Two-point Boundary Value Problem of Second-order Differential Equation

Authors: Xiguang Li

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two point’s boundary value problem for second-order differential equation, which improved and generalize the result of related paper.

Keywords: Singular differential equation, boundary value problem, coin, fixed point theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
1975 From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering

Authors: D. Zabala, Y. Cárdenas, G. Núñez

Abstract:

In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.

Keywords: Heat transfer experiment, thermal conductivity, finite difference, engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
1974 A Fast Cyclic Reduction Algorithm for A Quadratic Matrix Equation Arising from Overdamped Systems

Authors: Ning Dong, Bo Yu

Abstract:

We are concerned with a class of quadratic matrix equations arising from the overdamped mass-spring system. By exploring the structure of coefficient matrices, we propose a fast cyclic reduction algorithm to calculate the extreme solutions of the equation. Numerical experiments show that the proposed algorithm outperforms the original cyclic reduction and the structure-preserving doubling algorithm.

Keywords: Fast algorithm, Cyclic reduction, Overdampedquadratic matrix equation, Structure-preserving doubling algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
1973 Analytical Solutions of Three Dimensional Steady-State Heat Transfer in Rectangular Ribs

Authors: Tao Nie, Weiqiang Liu

Abstract:

In order to obtain an accurate result of the heat transfer of the rib in the internal cooling Rectangular channel, using separation of variables, analytical solutions of three dimensional steady-state heat conduction in rectangular ribs are given by solving three dimensional steady-state function of the rectangular ribs. Therefore, we can get solution of three dimensional temperature field in the rib. Based on the solution, we can get how the Bi number affected on heat transfer. Furthermore, comparisons of the analytical and numerical results indicate agreement on temperature field in the rib.

Keywords: variable separation method, analytical solution, rib, heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
1972 New High Order Group Iterative Schemes in the Solution of Poisson Equation

Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali

Abstract:

We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.

Keywords: Explicit group iterative method, finite difference, fourth order compact, Poisson equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
1971 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions

Authors: Khaled Moaddy

Abstract:

In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.

Keywords: Standard finite difference schemes, non–standard schemes, Laplace equation, Dirichlet boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
1970 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 q"≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: Microchannel heat sinks, Conjugate heat transfer, Optimization, Genetic algorithm method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
1969 Performance Evaluation of Extruded-Type Heat Sinks Used in Inverter for Solar Power Generation

Authors: Jeong Hyun Kim, Gyo Woo Lee

Abstract:

In this study, heat release performances of the three extruded-type heat sinks can be used in inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8m2. The heat release performances of E-38, E-47 and E-76 heat sinks were measured as 79.6, 81.6 and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of mass flow rates caused by different cross sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized.

Keywords: Solar Inverter, Heat Sink, Forced Convection, Heat Transfer, Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
1968 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow

Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani

Abstract:

Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.

Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
1967 Numerical Simulation of R410a-R23 and R404A-R508B Cascade Refrigeration System

Authors: A. D. Parekh, P. R. Tailor, Tejendra Patel

Abstract:

Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by a reduction in the evaporator temperature. The single stage vapour compression refrigeration system using various refrigerants are limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser, cascade condenser and evaporator for both systems are compared and the effect of condenser and evaporator temperature on heat-transfer area for both systems is studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condenser temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporator temperature (Te).

Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4522
1966 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues

Authors: MA. Ansari

Abstract:

In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.

Keywords: Diffusion equation, boundary element method, refractive index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1965 The Impact of System Cascading Collapse and Transmission Line Outages to the Transfer Capability Assessment

Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan

Abstract:

Uncertainty of system operating conditions is one of the causative reasons which may render to the instability of a transmission system. For that reason, accurate assessment of transmission reliability margin (TRM) is essential to ensure effective power transfer between areas during the occurrence of system uncertainties. The power transfer is also called as the available transfer capability (ATC) which is the information required by the utilities and marketers to instigate selling and buying the electric energy. This paper proposes a computationally effective approach to estimate TRM and ATC by considering the uncertainties of system cascading collapse and transmission line outages. In accordance to the results that have been obtained, the proposed method is essential for the transmission providers which could help the power marketers and planning sectors in the operation and reserving transmission services based on the ATC calculated.

Keywords: Available transfer capability, System cascading collapse, Transmission line outages, Transmission reliability margin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
1964 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Fengxia Zheng

Abstract:

By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
1963 Optimization of Transfer Pricing in a Recession with Reflection on Croatian Situation

Authors: Jasminka Radolović

Abstract:

Countries in recession, among them Croatia, have lower tax revenues as a result of unfavorable economic situation, which is decrease of the economic activities and unemployment. The global tax base has decreased. In order to create larger state revenues, states use the institute of tax authorities. By controlling transfer pricing in the international companies and using certain techniques, tax authorities can create greater tax obligations for the companies in a short period of time.

Keywords: Documentation, Methods, Tax Optimization, Transfer Pricing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1962 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages

Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang

Abstract:

Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.

Keywords: Epoxy molding compounds, optimization, regression analysis, transfer molding process, voids, wire sweep.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
1961 Hyers-Ulam Stability of Functional Equationf(3x) = 4f(3x − 3) + f(3x − 6)

Authors: Soon-Mo Jung

Abstract:

The functional equation f(3x) = 4f(3x-3)+f(3x- 6) will be solved and its Hyers-Ulam stability will be also investigated in the class of functions f : R → X, where X is a real Banach space.

Keywords: Functional equation, Lucas sequence of the first kind, Hyers-Ulam stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
1960 Inter-Organizational Knowledge Transfer Through Malaysia E-government IT Outsourcing: A Theoretical Review

Authors: Nor Aziati Abdul Hamid, Juhana Salim

Abstract:

The main objective of this paper is to contribute the existing knowledge transfer and IT Outsourcing literature specifically in the context of Malaysia by reviewing the current practices of e-government IT outsourcing in Malaysia including the issues and challenges faced by the public agencies in transferring the knowledge during the engagement. This paper discusses various factors and different theoretical model of knowledge transfer starting from the traditional model to the recent model suggested by the scholars. The present paper attempts to align organizational knowledge from the knowledge-based view (KBV) and organizational learning (OL) lens. This review could help shape the direction of both future theoretical and empirical studies on inter-firm knowledge transfer specifically on how KBV and OL perspectives could play significant role in explaining the complex relationships between the client and vendor in inter-firm knowledge transfer and the role of organizational management information system and Transactive Memory System (TMS) to facilitate the organizational knowledge transferring process. Conclusion is drawn and further research is suggested.

Keywords: E-government, IT Outsourcing, Knowledge Management, Knowledge Transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
1959 Using ANSYS to Realize a Semi-Analytical Method for Predicting Temperature Profile in Injection/Production Well

Authors: N. Tarom, M.M. Hossain

Abstract:

Determination of wellbore problems during a production/injection process might be evaluated thorough temperature log analysis. Other applications of this kind of log analysis may also include evaluation of fluid distribution analysis along the wellbore and identification of anomalies encountered during production/injection process. While the accuracy of such prediction is paramount, the common method of determination of a wellbore temperature log includes use of steady-state energy balance equations, which hardly describe the real conditions as observed in typical oil and gas flowing wells during production operation; and thus increase level of uncertainties. In this study, a practical method has been proposed through development of a simplified semianalytical model to apply for predicting temperature profile along the wellbore. The developed model includes an overall heat transfer coefficient accounting all modes of heat transferring mechanism, which has been focused on the prediction of a temperature profile as a function of depth for the injection/production wells. The model has been validated with the results obtained from numerical simulation.

Keywords: Energy balance equation, reservoir and well performance, temperature log, overall heat transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
1958 Mass Transfer of Paracetamol from the Crosslinked Carrageenan-Polyvinyl Alcohol Film

Authors: Sperisa Distantina, Rieke Ulfha Noviyanti, Sri Sutriyani, Fadilah Fadilah, Mujtahid Kaavessina

Abstract:

In this research, carrageenan extracted from seaweed Eucheuma cottonii was mixed with polyvinyl alcohol (PVA) and then crosslinked using glutaraldehyde (GA). The obtained hydrogel films were applied to control the drug release rate of paracetamol. The aim of this research was to develop a mathematical model that can be used to describe the mass transfer rate of paracetamol from the hydrogel film into buffer solution. The effect of weight ratio carrageenan-PVA (5: 0, 1: 0.5, 1: 1, 1: 2, 0: 5) on the parameters of the mathematical model was investigated also. Based on the experimental data, the proposed mathematical model could describe the mass transfer rate of paracetamol. The weight ratio of carrageenan-PVA greatly affected the amount of paracetamol absorbed in the hydrogel film and the mass transfer rate of paracetamol.

Keywords: Carrageenan-PVA, crosslinking, hydrogel, glutaraldehyde, paracetamol, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
1957 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539