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Abstract—The functional equation f(3x) = 4f(3x−3)+f(3x−
6) will be solved and its Hyers-Ulam stability will be also investigated
in the class of functions f : R → X , where X is a real Banach space.
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I. INTRODUCTION

IN 1940, Ulam gave a wide ranging talk before the Math-
ematics Club of the University of Wisconsin in which he

discussed a number of important unsolved problems (ref. [20]).
Among those was the question concerning the stability of
homomorphisms:

Let G1 be a group and let G2 be a metric group
with a metric d(·, ·). Given any ε > 0, does there
exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for
all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈
G1?

In the following year, Hyers affirmatively answered in his
paper [8] the question of Ulam for the case where G1 and
G2 are Banach spaces. Later, the result of Hyers has been
generalized by Rassias (ref. [16]).

Let (G1, ·) be a groupoid and let (G2,+) be a groupoid
with the metric d. The equation of homomorphism

f(x · y) = f(x) + f(y)

is stable in the Hyers-Ulam sense (or has the Hyers-Ulam
stability) if for every δ > 0 there exists an ε > 0 such that for
every function h : G1 → G2 satisfying

d[h(x · y), h(x) + h(y)] ≤ ε

for all x, y ∈ G1 there exists a solution g : G1 → G2 of the
equation of homomorphism with

d[h(x), g(x)] ≤ δ

for any x ∈ G1 (see [15, Definition 1]).
This terminology is also applied to the case of other func-

tional equations. It should be remarked that a lot of references
concerning the stability of functional equations can be found
in the books [3], [9], [12] (see also [1], [4], [5], [6], [7], [10],
[11], [17], [18], [19]).
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The nth Fibonacci number will be denoted by Fn for n ∈
N. It is well known that the Fibonacci numbers satisfy the
equality F3n = 4F3n−3 + F3n−6 for all n ≥ 2 (see [14,
p. 89]). From this famous formula, the following functional
equation

f(3x) = 4f(3x − 3) + f(3x − 6) (1)

may be derived.
In this paper, using the idea from [13], the functional

equation (1) will be solved and its Hyers-Ulam stability will
be investigated in the class of functions f : R → X , where
X is a real Banach space.

Throughout this paper, the positive and the negative root of
the equation x2 − 4x − 1 = 0 will be denoted by a and b,
respectively, i.e.,

a = 2 +
√

5 and b = 2 −
√

5.

Moreover, the Lucas sequence of the first kind will be denoted
by {Un(4,−1)} and an abbreviation Un will be used instead
of Un(4,−1), i.e., Un is defined by

Un = Un(4,−1) =
an − bn

a − b

for all integers n. It is not difficult to see that

Un+2 = 4Un+1 + Un (2)

for any integer n. For any x ∈ R, [x] stands for the largest
integer that does not exceed x.

II. GENERAL SOLUTION TO EQ. (1)

Throughout this section, let X be a real vector space.
The general solution of the functional equation (1) will be
investigated.

Theorem 2.1. Let X be a real vector space. A function f :
R → X is a solution of the functional equation (1) if and
only if there exists a function h : [−3, 3) → X such that

f(x) = U[x/3]+1h(x−3[x/3])+U[x/3]h(x−3[x/3]−3). (3)

Proof. Since a + b = 4 and ab = −1, it follows from (1) that{
f(3x) − af(3x − 3) = b [f(3x − 3) − af(3x − 6)] ,

f(3x) − bf(3x − 3) = a [f(3x − 3) − bf(3x − 6)] .
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If a function g : R → X is defined by g(x) = f(3x) for each
x ∈ R, then it follows from the above equalities that

{
g(x) − ag(x − 1) = b [g(x − 1) − ag(x − 2)] ,

g(x) − bg(x − 1) = a [g(x − 1) − bg(x − 2)] .
(4)

By the mathematical induction, it can be proved that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(x) − ag(x − 1)

= bn [g(x − n) − ag(x − n − 1)] ,

g(x) − bg(x − 1)

= an [g(x − n) − bg(x − n − 1)]

(5)

for all x ∈ R and n ∈ {0, 1, 2, . . .}. Substitute x + n (n ≥ 0)
for x in (5) and divide the resulting equations by bn resp.
an, and then substitute −m for n in the resulting equations
to obtain the equations in (5) with m in place of n, where
m ∈ {0,−1,−2, . . .}. Therefore, the equations in (5) are true
for all x ∈ R and n ∈ Z.

Multiply the first and the second equation of (5) by b and
a, respectively. And subtract the first resulting equation from
the second one to obtain

g(x) = Un+1g(x − n) + Ung(x − n − 1) (6)

for any x ∈ R and n ∈ Z.
Putting n = [x] in (6) yields

g(x) = U[x]+1g(x − [x]) + U[x]g(x − [x] − 1),

i.e., by the definition of g, it holds that

f(x) = U[x/3]+1f(x − 3[x/3]) + U[x/3]f(x − 3[x/3] − 3)

for all x ∈ R.
Since 0 ≤ x− 3[x/3] < 3 and −3 ≤ x− 3[x/3]− 3 < 0, if

a function h : [−3, 3) → X is defined by h := f |[−3,3), then
f is a function of the form (3).

Now, assume that f is a function of the form (3), where
h : [−3, 3) → X is an arbitrary function. Then, it follows
from (3) that

f(3x) = U[x]+1h(3x − 3[x]) + U[x]h(3x − 3[x] − 3),

f(3x − 3) = U[x]h(3x − 3[x]) + U[x]−1h(3x − 3[x] − 3),

f(3x − 6) = U[x]−1h(3x − 3[x]) + U[x]−2h(3x − 3[x] − 3)

for any x ∈ R. Thus, by (2), it holds that

f(3x) − 4f(3x − 3) − f(3x − 6)
= (U[x]+1 − 4U[x] − U[x]−1)h(3x − 3[x])

+(U[x] − 4U[x]−1 − U[x]−2)h(3x − 3[x] − 3)
= 0,

which completes the proof.

III. HYERS-ULAM STABILITY OF EQ. (1)

In this section, a denotes the positive root of the equation
x2 − 4x − 1 = 0 and b is its negative root. The Hyers-Ulam
stability of the functional equation (1) will be proved in the
following theorem.

Theorem 3.1. Let (X, ‖ · ‖) be a real Banach space. If a
function f : R → X satisfies the inequality

‖f(3x) − 4f(3x − 3) − f(3x − 6)‖ ≤ ε (7)

for all x ∈ R and for some ε ≥ 0, then there exists a unique
solution function F : R → X of (1) such that

‖f(x) − F (x)‖ ≤ 5 +
√

5
20

ε (8)

for all x ∈ R.

Proof. First, define a function g : R → X by g(x) = f(3x)
for all x ∈ R. Analogously to the first equation of (4), it
follows from (7) that

‖g(x) − ag(x − 1) − b[g(x − 1) − ag(x − 2)]‖ ≤ ε

for each x ∈ R. Replacing x with x− k in the last inequality
yields

‖g(x − k) − ag(x − k − 1)
− b[g(x − k − 1) − ag(x − k − 2)]‖

≤ ε

and further

∥∥bk[g(x − k) − ag(x − k − 1)]

− bk+1[g(x − k − 1) − ag(x − k − 2)]
∥∥ (9)

≤ |b|kε

for all x ∈ R and k ∈ Z. By (9), it obviously holds that

‖g(x) − ag(x − 1) − bn[g(x − n) − ag(x − n − 1)]‖

≤
n−1∑
k=0

‖bk[g(x − k) − ag(x − k − 1)] (10)

− bk+1[g(x − k − 1) − ag(x − k − 2)]‖

≤
n−1∑
k=0

|b|kε

for x ∈ R and n ∈ N.
For any x ∈ R, (9) implies that the sequence {bn[g(x−n)−

ag(x − n − 1)]} is a Cauchy sequence. (Note that |b| < 1).
Therefore, a function G1 : R → X can be defined by

G1(x) = lim
n→∞ bn[g(x − n) − ag(x − n − 1)],
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since X is complete. It follows from the definition of G1 that

4G1(x − 1) + G1(x − 2)
= 4b−1 lim

n→∞ bn+1[g(x − (n + 1))

− ag(x − (n + 1) − 1)]
+ b−2 lim

n→∞ bn+2[g(x − (n + 2)) (11)

− ag(x − (n + 2) − 1)]
= 4b−1G1(x) + b−2G1(x)
= G1(x)

for all x ∈ R, since b2 = 4b + 1. If n goes to infinity, then
(10) yields that

‖g(x) − ag(x − 1) − G1(x)‖ ≤ 3 +
√

5
4

ε (12)

for every x ∈ R.
On the other hand, it also follows from (7) that

‖g(x) − bg(x − 1) − a[g(x − 1) − bg(x − 2)]‖ ≤ ε

(see the second equation in (4)). Analogously to (9), replacing
x by x + k in the above inequality and then dividing by ak

both sides of the resulting inequality yield∥∥a−k[g(x + k) − bg(x + k − 1)]

− a−k+1[g(x + k − 1) − bg(x + k − 2)]
∥∥ (13)

≤ a−kε

for all x ∈ R and k ∈ Z. It further follows from (13) that

‖a−n[g(x + n) − bg(x + n − 1)] − [g(x) − bg(x − 1)]‖

≤
n∑

k=1

‖a−k[g(x + k) − bg(x + k − 1)] (14)

− a−k+1[g(x + k − 1) − bg(x + k − 2)]‖

≤
n∑

k=1

a−kε

for x ∈ R and n ∈ N.
On account of (13), the sequence {a−n[g(x + n)− bg(x +

n− 1)]} is a Cauchy sequence for any fixed x ∈ R. Hence, a
function G2 : R → X can be defined by

G2(x) = lim
n→∞ a−n[g(x + n) − bg(x + n − 1)].

It follows from the definition of G2 that

4G2(x − 1) + G2(x − 2)
= 4a−1 lim

n→∞ a−(n−1)[g(x + n − 1)

− bg(x + (n − 1) − 1)]
+ a−2 lim

n→∞ a−(n−2)[g(x + n − 2) (15)

− bg(x + (n − 2) − 1)]
= 4a−1G2(x) + a−2G2(x)
= G2(x)

for any x ∈ R. By letting n go to infinity, (14) yields

‖G2(x) − g(x) + bg(x − 1)‖ ≤
√

5 − 1
4

ε (16)

for x ∈ R.
From (12) and (16), it follows that∥∥∥∥g(x) −

[
b

b − a
G1(x) − a

b − a
G2(x)

]∥∥∥∥
=

1
|b − a| ‖(b − a)g(x) − [bG1(x) − aG2(x)]‖

≤ 1
a − b

‖bg(x) − abg(x − 1) − bG1(x)‖ (17)

+
1

a − b
‖aG2(x) − ag(x) + abg(x − 1)‖

≤ 5 +
√

5
20

ε

for all x ∈ R. Now define a function F : R → X by

F (x) =
b

b − a
G1

(x

3

)
− a

b − a
G2

(x

3

)
for all x ∈ R. Then, it follows from (11) and (15) that

4F (3x − 3) + F (3x − 6)

=
4b

b − a
G1(x − 1) − 4a

b − a
G2(x − 1)

+
b

b − a
G1(x − 2) − a

b − a
G2(x − 2)

=
b

b − a
[4G1(x − 1) + G1(x − 2)]

− a

b − a
[4G2(x − 1) + G2(x − 2)]

=
b

b − a
G1(x) − a

b − a
G2(x)

= F (3x)

for each x ∈ R, i.e., F is a solution of (1). Moreover, the
inequality (8) follows from (17).

The uniqueness of F will be proved. Assume that F1, F2 :
R → X are solutions of (1) and that there exist positive
constants C1 and C2 with

‖f(x) − F1(x)‖ ≤ C1 and ‖f(x) − F2(x)‖ ≤ C2 (18)

for all x ∈ R. According to Theorem 2.1, there exist functions
h1, h2 : [−3, 3) → X such that

F1(x) = U[x/3]+1h1(x − 3[x/3])

+ U[x/3]h1(x − 3[x/3] − 3),

F2(x) = U[x/3]+1h2(x − 3[x/3])

+ U[x/3]h2(x − 3[x/3] − 3)

(19)

for any x ∈ R, since F1 and F2 are solutions of (1).
Fix a t with 0 ≤ t < 3. It then follows from (18) and (19)

that

‖Un+1[h1(t) − h2(t)] + Un[h1(t − 3) − h2(t − 3)]‖
= ‖[Un+1h1(t) + Unh1(t − 3)]

− [Un+1h2(t) + Unh2(t − 3)]‖
= ‖F1(3n + t) − F2(3n + t)‖
≤ ‖F1(3n + t) − f(3n + t)‖ + ‖f(3n + t) − F2(3n + t)‖
≤ C1 + C2
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for each n ∈ Z, i.e.,∥∥∥∥an+1 − bn+1

a − b
[h1(t) − h2(t)]

+
an − bn

a − b
[h1(t − 3) − h2(t − 3)]

∥∥∥∥ (20)

≤ C1 + C2

for every n ∈ Z. Dividing both sides by an yields that∥∥∥∥a − (b/a)nb

a − b
[h1(t) − h2(t)]

+
1 − (b/a)n

a − b
[h1(t − 3) − h2(t − 3)]

∥∥∥∥
≤ C1 + C2

an
.

Let n → ∞ to get

a[h1(t) − h2(t)] + [h1(t − 3) − h2(t − 3)] = 0. (21)

Analogously, divide both sides of (20) by |b|n and let n →
−∞ to get

b[h1(t) − h2(t)] + [h1(t − 3) − h2(t − 3)] = 0. (22)

From (21) and (22), it follows that(
a 1
b 1

)(
h1(t) − h2(t)

h1(t − 3) − h2(t − 3)

)
=

(
0
0

)
.

Because a − b 	= 0, it should hold that

h1(t) − h2(t) = h1(t − 3) − h2(t − 3) = 0

for any t ∈ [0, 3), i.e., h1(t) = h2(t) for all t ∈ [−3, 3).
Therefore, it is true that F1(x) = F2(x) for any x ∈ R.

Remark 1. The presented proof of uniqueness of F is due to
an idea of Professor Changsun Choi. It should be remarked
that the uniqueness of F can be obtained directly from [2,
Proposition 1].
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