Search results for: Isogrid-stiffened composite panels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 802

Search results for: Isogrid-stiffened composite panels

772 Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material

Authors: Avishek Chanda, Nam Kyeun Kim, Debes Bhattacharyya

Abstract:

The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels’ fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m2. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m2, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation.

Keywords: Corrugated sandwich panel, fire-reaction properties, plywood, renewable material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
771 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments

Authors: Melby Chacko, Jagannath Nayak

Abstract:

The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.

Keywords: 6061 Al-SiC composite, Aging curve, Rockwell B hardness, T4, T6 treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4712
770 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements

Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach

Abstract:

In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.

Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
769 Numerical Study for Structural Design of Composite Rotor with Crack Initiation

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir

Abstract:

In this paper, a coupled damage effect in the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade are developed. The use of the composite material for the rotor offers a good stability. Numerical calculations on the model developed prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed determining the vibratory responses due to various excitations.

Keywords: Rotor, composite, damage, finite element, numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
768 Numerical and Experimental Stress Analysis of Stiffened Cylindrical Composite Shell under Transverse end Load

Authors: J. Arashmehr, G. H. Rahimi, S.F.Rasouli

Abstract:

Grid composite structures have many applications in aerospace industry in which deal with transverse loadings abundantly. In present paper a stiffened composite cylindrical shell with clamped-free boundary condition under transverse end load experimentally and numerically was studied. Some electrical strain gauges were employed to measure the strains. Also a finite element analysis was done for validation of experimental result. The FEM software used was ANSYS11. In addition, the results between stiffened composite shell and unstiffened composite shell were compared. It was observed that intersection of two stiffeners has an important effect in decrease of stress in the shell. Fairly good agreements were observed between the numerical and the measured results. According to recent studies about grid composite structures, it should be noted that any investigation like this research has not been reported.

Keywords: Grid composite structure, Transverse loadings, Strain measurement, Finite element analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
767 The Effect of Parameters on Productions of NiO/Al2O3/B2O3/SiO2 Composite Nanofibers by Using Sol-Gel Processing and Electrospinning Technique

Authors: Fatih Sevim, Emel Sevimli, Fatih Demir, Turan Çalban

Abstract:

Nanofibers of PVA /nickel nitrate/silica/alumina izopropoxide/boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of NiO/Al2O3/B2O3/SiO2 composite with diameters about 500 nm could be successfully obtained. The fibers were characterized by XRD and SEM analyses.

Keywords: Nanofibers, ceramics composite, sol-gel processing, electrospinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
766 Affecting Factors of the Mechanical Properties to Phenolic/Fiber Composite

Authors: Thirapat Kitinirunkul, Nattawat Winya, Komson Prapunkarn

Abstract:

Influences of the amount of phenolic, curing temperature and curing time on the Mechanical Properties of phenolic/fiber composite were investigated by using two-level factorial design. The latter was used to determine the affects of those factors on mechanical properties. The purpose of this study was to investigate the affects of amount of phenolic, curing temperature and curing time of the composite to determine the best condition for mechanical properties according to MIL-I-24768 by the tensile strength is more than 103 MPa.

Keywords: Phenolic Resin, Composite, Fiber Composite, Affecting Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4071
765 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading

Authors: Y. S. Tai, M. Y. Huang, H. T. Hu

Abstract:

The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.

Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
764 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car

Authors: Erik Vassøy Olsen, Hirpa G. Lemu

Abstract:

Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat racecar they have designed and built. Design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the competition requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm, so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.

Keywords: Composite material, formula student, ion racing, monocoque design, structural equivalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6150
763 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung

Abstract:

In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.

Keywords: Basalt fiber reinforced polymer, buckling performance, FEM analysis, sandwich infill panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
762 Composite Patch Repair of Central Crack Growth in Aluminium Alloy Plate

Authors: S. Lecheb, A. Chellil, H. Mechakra, A. Zeggane, H. Kebir

Abstract:

In this work, repaired crack in 6061- T6 aluminum plate with composite patches presented, firstly we determine the displacement, strain and stress, also the first six mode shape of the plate, secondly we took the same model adding central crack initiation, which is located in the center of the plate, its seize vary from 20 mm to 60 mm and we compare the first results with second. Thirdly we repair various cracks with composite patch (carbon/ epoxy) and for (2 layers, 4 layers). Finally the comparison of stress, strain, displacement and six first natural frequencies between un-cracked specimen, crack propagation and composite patch repair.

Keywords: Composite patch repair, crack growth, aluminum alloy plate, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
761 Computational Study of Improving the Efficiency of Photovoltaic Panels in the UAE

Authors: Ben Richard Hughes, Ng Ping Sze Cherisa, Osman Beg

Abstract:

Various solar energy technologies exist and they have different application techniques in the generation of electrical power. The widespread use of photovoltaic (PV) modules in such technologies has been limited by relatively high costs and low efficiencies. The efficiency of PV panels decreases as the operating temperatures increase. This is due to the affect of solar intensity and ambient temperature. In this work, Computational Fluid Dynamics (CFD) was used to model the heat transfer from a standard PV panel and thus determine the rate of dissipation of heat. To accurately model the specific climatic conditions of the United Arab Emirates (UAE), a case study of a new build green building in Dubai was used. A finned heat pipe arrangement is proposed and analyzed to determine the improved heat dissipation and thus improved performance efficiency of the PV panel. A prototype of the arrangement is built for experimental testing to validate the CFD modeling and proof of concept.

Keywords: Computational Fluid Dynamics, Improving Efficiency, Photovoltaic (PV) Panels, Heat-pipe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3445
760 Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont

Abstract:

TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.

Keywords: Silver nanoparticle, TiO2/Ag composite films, Optical properties, surface plasmon resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
759 Local Buckling of Web-Core and Foam-Core Sandwich Panels

Authors: Ali N. Suri, Ahmad A. Al-Makhlufi

Abstract:

Sandwich construction is widely accepted as a method of construction especially in the aircraft industry. It is a type of stressed skin construction formed by bonding two thin faces to a thick core, the faces resist all of the applied edge loads and provide all or nearly all of the required rigidities, the core spaces the faces to increase cross section moment of inertia about common neutral axis and transmit shear between them provides a perfect bond between core and faces is made.

Material for face sheets can be of metal or reinforced plastics laminates, core material can be metallic cores of thin sheets forming corrugation or honeycomb, or non metallic core of Balsa wood, plastic foams, or honeycomb made of reinforced plastics.

For in plane axial loading web core and web-foam core Sandwich panels can fail by local buckling of plates forming the cross section with buckling wave length of the order of length of spacing between webs.

In this study local buckling of web core and web-foam core Sandwich panels is carried out for given materials of facing and core, and given panel overall dimension for different combinations of cross section geometries.

The Finite Strip Method is used for the analysis, and Fortran based computer program is developed and used.

Keywords: Local Buckling, Finite Strip, Sandwich panels, Web and foam core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
758 Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites

Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky

Abstract:

In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.

Keywords: Differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
757 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: Composite, epoxy, polyester, relining, sewage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
756 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Blast loading, finite element modeling, steel honeycomb sandwich panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
755 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite

Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun

Abstract:

In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.

Keywords: Fiber treatment, impact modifier, natural fibers, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3225
754 Design of Composite Risers for Minimum Weight

Authors: Chunguang Wang, Krishna Shankar, Evgeny V. Morozov

Abstract:

The use of composite materials in offshore engineering for deep sea oil production riser systems has drawn considerable interest due to the potential weight savings and improvement in durability. The design of composite risers consists of two stages: (1) local design based on critical local load cases, and (2) global analysis of the full length composite riser under global loads and assessment of critical locations. In the first stage, eight different material combinations were selected and their laminate configurations optimised under local load considerations. Stage two includes a final local stress analysis of the critical sections of the riser under the combined loads determined in the global analysis. This paper describes two design methodologies of the composite riser to provide minimum structural weight and shows that the use of off angle fibre orientations in addition to axial and hoop reinforcements offer substantial weight savings and ensure the structural capacity.

Keywords: Composite Riser, Composite Tubular, Finite Element Modelling, Global Design, Local Design, Offshore Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
753 Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials

Authors: Andras Szekrenyes

Abstract:

This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.

Keywords: Composite, fracture mechanics, toughness testing, mixed-mode II/III fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
752 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab

Authors: V. Přivřelová

Abstract:

Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.

Keywords: Composite beams, high-performance concrete, highstrength steel, lightweight concrete slab, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
751 Contact Problem for an Elastic Layered Composite Resting on Rigid Flat Supports

Authors: T. S. Ozsahin, V. Kahya, A. Birinci, A. O. Cakiroglu

Abstract:

In this study, the contact problem of a layered composite which consists of two materials with different elastic constants and heights resting on two rigid flat supports with sharp edges is considered. The effect of gravity is neglected. While friction between the layers is taken into account, it is assumed that there is no friction between the supports and the layered composite so that only compressive tractions can be transmitted across the interface. The layered composite is subjected to a uniform clamping pressure over a finite portion of its top surface. The problem is reduced to a singular integral equation in which the contact pressure is the unknown function. The singular integral equation is evaluated numerically and the results for various dimensionless quantities are presented in graphical forms.

Keywords: Frictionless contact, Layered composite, Singularintegral equation, The theory of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
750 Investigation of the Neutral Axis in the Positive Moment Region of Composite Beams

Authors: Su-Young Jeong, Won-Kee Hong, Seon-Chee Park, Gyun-Taek Lim, Eric Kim

Abstract:

Researchers investigate arious strategies to develop composite beams and maximize the structural advantages. This study attempted to conduct experiments and analysis of changes in the neutral axis of positive moments of a Green Beam. Strain compatibility analysis was used, and its efficiency was demonstrated by comparing experimental and analytical values. In the comparison of neutral axis, the difference between experimental and analytical values was found to range from 8.8~26.2%. It was determined that strain compatibility analysis can be useful for predicting the behaviors of composite beams, with the ability to predict the behavior of not only the elastic location of the composite member, but also of the plastic location

Keywords: Composite beam, Strain compatibility, Neutral axis, Green Beam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
749 Investigating the Influence of Porosity on Thermal and Mechanical Properties of a C/C Composite Using Image Based FE Modelling

Authors: Abdulrahman A. Alghamdi, Paul M. Mummery, Mohammad A. Sheikh

Abstract:

In this paper, 3D image based composite unit cell is constructed from high resolution tomographic images. Through-thickness thermal diffusivity and in-plane Young’s modulus are predicted for the composite unit cell. The accuracy of the image based composite unit cell is tested by comparing its results with the experimental results obtained from laser flash and tensile test. The FE predictions are in close agreement with experimental results. Through-thickness thermal diffusivity and in-plane Young’s modulus of a virgin C/C composite are predicted by replacing the properties of air (porosity) with the properties of carbon matrix. The effect of porosity was found to be more profound on thermal diffusivity than young’s modulus.

Keywords: Porosity, C/C composite, image based FE modelling, CMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
748 Oriented Strandboard-GEOGYPTM Underlayment - A Novel Composite Flooring System

Authors: B. Noruziaan, A. Shvarzman, R. Leahy

Abstract:

An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.

Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
747 Manufacture of Electroless Nickel/YSZ Composite Coatings

Authors: N. Bahiyah Baba, W. Waugh, A.M. Davidson

Abstract:

The paper discusses optimising work on a method of processing ceramic / metal composite coatings for various applications and is based on preliminary work on processing anodes for solid oxide fuel cells (SOFCs). The composite coating is manufactured by the electroless co-deposition of nickel and yttria stabilised zirconia (YSZ) simultaneously on to a ceramic substrate. The effect on coating characteristics of substrate surface treatments and electroless nickel bath parameters such as pH and agitation methods are also investigated. Characterisation of the resulting deposit by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA) is also discussed.

Keywords: Electroless deposition, nickel, YSZ, composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
746 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet F. Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminum foam core because of very good properties such as flexural rigidity and energy absorption capability. In the current investigation, the static threepoint bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load and energy absorption capacity. For this purpose, the skins with two different types of fabrics which have same thickness value and the aluminum foam core with two different thicknesses were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: Aluminum foam, Composite panel, Flexure, Transport application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283
745 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers

Authors: H. Ucar, U. Aridogan

Abstract:

Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.

Keywords: FRP, marine composite, piezoelectric transducer, sea state, wave-induced loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
744 Study the Behavior of Different Composite Short Columns (DST) with Prismatic Sections under Bending Load

Authors: V. Sadeghi Balkanlou, M. Reza Bagerzadeh Karimi, A. Hasanbakloo, B. Bagheri Azar

Abstract:

In this paper, the behavior of different types of DST columns has been studied under bending load. Briefly, composite columns consist of an internal carbon steel tube and an external stainless steel wall that the between the walls are filled with concrete. Composite columns are expected to combine the advantages of all three materials and have the advantage of high flexural stiffness of CFDST columns. In this research, ABAQUS software is used for finite element analysis then the results of ultimate strength of the composite sections are illustrated.

Keywords: DST, Stainless steel, carbon steel, ABAQUS, Straigh Columns, Tapered Columns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3486
743 Experimental Testing of Composite Tubes with Different Corrugation Profile Subjected to Lateral Compression Load

Authors: Elfetori F. Abdewi

Abstract:

This paper presents the effect of corrugation profile geometry on the crushing behavior, energy absorption, failure mechanism, and failure mode of woven roving glass fibre/epoxy laminated composite tube. Experimental investigations were carried out on composite tubes with three different profile shapes: sinusoidal, triangular and trapezoidal. The tubes were subjected to lateral compressive loading. On the addition to a radial corrugated composite tube, cylindrical composite tube, were fabricated and tested under the same condition in order to know the effect of corrugation geometry. Typical histories of their deformation are presented. Behavior of tubes as regards the peak crushing load, energy absorbed and mode of crushing has been discussed. The results show that the behavior of the tube under lateral compression load is influenced by the geometry of the tube itself.

Keywords: Corrugated composite specimens, Energy absorption, Lateral crushing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289