WASET
	%0 Journal Article
	%A Emre Kara and  Ahmet F. Geylan and  Kadir Koç and  Şura Karakuzu and  Metehan Demir and  Halil Aykul
	%D 2015
	%J International Journal of Civil and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 101, 2015
	%T Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses
	%U https://publications.waset.org/pdf/10001415
	%V 101
	%X The structures obtained with the use of sandwich
technologies combine low weight with high energy absorbing
capacity and load carrying capacity. Hence, there is a growing and
markedly interest in the use of sandwiches with aluminum foam core
because of very good properties such as flexural rigidity and energy
absorption capability. In the current investigation, the static threepoint
bending tests were carried out on the sandwiches with
aluminum foam core and glass fiber reinforced polymer (GFRP)
skins at different values of support span distances aiming the analyses
of their flexural performance. The influence of the core thickness and
the GFRP skin type was reported in terms of peak load and energy
absorption capacity. For this purpose, the skins with two different
types of fabrics which have same thickness value and the aluminum
foam core with two different thicknesses were bonded with a
commercial polyurethane based flexible adhesive in order to combine
the composite sandwich panels. The main results of the bending tests
are: force-displacement curves, peak force values, absorbed energy,
collapse mechanisms and the effect of the support span length and
core thickness. The results of the experimental study showed that the
sandwich with the skins made of S-Glass Woven fabrics and with the
thicker foam core presented higher mechanical values such as load
carrying and energy absorption capacities. The increment of the
support span distance generated the decrease of the mechanical
values for each type of panels, as expected, because of the inverse
proportion between the force and span length. The most common
failure types of the sandwiches are debonding of the lower skin and
the core shear. The obtained results have particular importance for
applications that require lightweight structures with a high capacity
of energy dissipation, such as the transport industry (automotive,
aerospace, shipbuilding and marine industry), where the problems of
collision and crash have increased in the last years.
	%P 596 - 601