Search results for: Heat transfer performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7257

Search results for: Heat transfer performance

7197 Transient Heat Transfer Model for Car Body Primer Curing

Authors: D. Zabala, N. Sánchez, J. Pinto

Abstract:

A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the car roof and floor. The transient heat conduction in each flat plate is modeled by the lumped capacitance method. Comparison with the experimental data shows that the heat transfer model works well for the prediction of thermal behavior of the car body in the curing furnace, with deviations below 5%.

Keywords: Transient heat transfer, car body, lumpedcapacitance, primer baking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
7196 Analysis of Liquid Nitrogen Spray Atomization Characteristics by Internal-Mixing Atomizers

Authors: Zhang Lei, Liu Gaotong

Abstract:

The atomization effect is an important factor of the heat transfer of liquid nitrogen spray. In this paper, two kinds of internal-mixing twin-fluid atomizers were design. According to the fracture theory and fluid mechanics, the model is established to simulate atomization effect. The results showed that: Internal-mixing atomizers, with the liquid nitrogen atomization size from 20um to 40um, have superior performance. Y-jet atomizer spray speed is greater than Multi-jet atomizer, and it can improve the efficiency of heat transfer between the liquid nitrogen and its spray object. Multi-jet atomizer atomization cone angle is about 30°, Y-jet atomizer atomization cone angle is about 20°. During atomizer selection, the size of the heat transfer area should be considered.

Keywords: Atomization, two-phase flow, atomizer, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2777
7195 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad

Abstract:

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
7194 The Influence of Pad Thermal Diffusivity over Heat Transfer into the PCBs Structure

Authors: Mihai Brânzei, Ioan Plotog, Ion Pencea

Abstract:

The Pads have unique values of thermophysical properties (THP) having important contribution over heat transfer into the PCB structure. Materials with high thermal diffusivity (TD) rapidly adjust their temperature to that of their surroundings, because the HT is quick in compare to their volumetric heat capacity (VHC). In the paper is presenting the diffusivity tests (ASTM E1461 flash method) for PCBs with different core materials. In the experiments, the multilayer structure of PCBA was taken into consideration, an equivalent property referring to each of experimental structure be practically measured. Concerning to entire structure, the THP emphasize the major contribution of substrate in establishing of reflow soldering process (RSP) heat transfer necessities. This conclusion offer practical solution for heat transfer time constant calculation as function of thickness and substrate material diffusivity with an acceptable error estimation.

Keywords: heat transfer time constant, packaging, reflowsoldering process, thermal diffusivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
7193 Behavior of Ice Melting in Natural Convention

Authors: N. Dizadji, P. Entezar

Abstract:

In this paper, the ice melting in rectangular, cylindrical and conical forms, which are erected vertically against air flow, are experimentally studied in the free convection regime.The results obtained are: Nusslet Number, heat transfer coefficient andGrashof Number, and the variations of the said numbers in relation to the time. The variations of ice slab area and volume are measured, too.

Keywords: Nusselt Number, Heat Transfer, Grashof Number, Heat Transfer Coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
7192 Modeling the Effect of Spacer Orientation on Heat Transfer in Membrane Distillation

Authors: M. Shakaib, M. Ehtesham-ul Haq, I. Ahmed, R.M. Yunus

Abstract:

Computational fluid dynamics (CFD) simulations carried out in this paper show that spacer orientation has a major influence on temperature patterns and on the heat transfer rates. The local heat flux values significantly vary from high to very low values at each filament when spacer touches the membrane surface. The heat flux profile is more uniform when spacer filaments are not in contact with the membrane thus making this arrangement more beneficial. The temperature polarization is also found to be less in this case when compared to the empty channel.

Keywords: heat transfer, membrane distillation, spacer, temperature polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
7191 Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers

Authors: N. K. Singh

Abstract:

In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.

Keywords: Heat transfer, channel with vortex generators, numerical simulation, effect of Reynolds number on heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
7190 Experimental Investigation of Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Laminar Flow Regime inside a Circular Tube

Authors: H. Almohammadi, Sh. Nasiri Vatan, E. Esmaeilzadeh, A. Motezaker, A. Nokhosteen

Abstract:

In the present study, Convective heat transfer coefficient and pressure drop of Al2O3/water nanofluid in laminar flow regime under constant heat flux conditions inside a circular tube were experimentally investigated. Al2O3/water nanofluid with 0.5% and 1% volume concentrations with 15 nm diameter nanoparticles were used as working fluid. The effect of different volume concentrations on convective heat transfer coefficient and friction factor was studied. The results emphasize that increasing of particle volume concentration leads to enhance convective heat transfer coefficient. Measurements show the average heat transfer coefficient enhanced about 11-20% with 0.5% volume concentration and increased about 16-27% with 1% volume concentration compared to distilled water. In addition, the convective heat transfer coefficient of nanofluid enhances with increase in heat flux. From the results, the average ratio of (fnf/fbf) was about 1.10 for 0.5% volume concentration. Therefore, there is no significant increase in friction factor for nanofluids.

Keywords: Convective heat transfer, Laminar flow regime, Nanofluids, Pressure drop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3719
7189 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube

Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi

Abstract:

In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.

Keywords: Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
7188 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids

Authors: S. Etaig, R. Hasan, N. Perera

Abstract:

This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.

Keywords: Computational fluid Dynamics, Natural convection, Nanofluid and Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
7187 Air Flows along Perforated Metal Plates with the Heat Transfer

Authors: K. Fraňa, S. Simon

Abstract:

The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered.

Keywords: Perforations, convective heat transfers, turbulent flows, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
7186 Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path

Authors: Gyu-Jin Shim, Seung-Moon Baek, Choon-Geun Moon, Ho-Saeng Lee, Jung-In Yoon

Abstract:

The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.

Keywords: Closed–Wet Cooling Tower, Cooling Capacity, Heatand Mass Transfer Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
7185 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
7184 Convective Heat Transfer of Internal Electronic Components in a Headlight Geometry

Authors: Jan Langebach, Peter Fischer, Christian Karcher

Abstract:

A numerical study is presented on convective heat transfer in enclosures. The results are addressed to automotive headlights containing new-age light sources like Light Emitting Diodes (LED). The heat transfer from the heat source (LED) to the enclosure walls is investigated for mixed convection as interaction of the forced convection flow from an inlet and an outlet port and the natural convection at the heat source. Unlike existing studies, inlet and outlet port are thermally coupled and do not serve to remove hot fluid. The input power of the heat source is expressed by the Rayleigh number. The internal position of the heat source, the aspect ratio of the enclosure, and the inclination angle of one wall are varied. The results are given in terms of the global Nusselt number and the enclosure Nusselt number that characterize the heat transfer from the source and from the interior fluid to the enclosure walls, respectively. It is found that the heat transfer from the source to the fluid can be maximized if the source is placed in the main stream from the inlet to the outlet port. In this case, the Reynolds number and heat source position have the major impact on the heat transfer. A disadvantageous position has been found where natural and forced convection compete each other. The overall heat transfer from the source to the wall increases with increasing Reynolds number as well as with increasing aspect ratio and decreasing inclination angle. The heat transfer from the interior fluid to the enclosure wall increases upon decreasing the aspect ratio and increasing the inclination angle. This counteracting behaviour is caused by the variation of the area of the enclosure wall. All mixed convection results are compared to the natural convection limit.

Keywords: Enclosure, heat source, heat transfer, mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
7183 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.

Keywords: Phase change material, thermal energy storage, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
7182 Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field

Authors: Zone-Ching Lin, Meng-Hua Lin, Ying-Chih Hsu

Abstract:

This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.

Keywords: Quasi-steady molecular statics, Nanoscale orthogonal cutting, Finite difference, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
7181 A Review of Heat Pipe Heat Exchangers Activity in Asia

Authors: Ehsan Firouzfar, Maryam Attaran

Abstract:

Heat pipes are two-phase heat transfer devices with high effective thermal conductivity. Due to the high heat transport capacity, heat exchanger with heat pipes has become much smaller than traditional heat exchangers in handling high heat fluxes. With the working fluid in a heat pipe, heat can be absorbed on the evaporator region and transported to the condenser region where the vapour condenses releasing the heat to the cooling media. Heat pipe technology has found increasing applications in enhancing the thermal performance of heat exchangers in microelectranics, energy saving in HVAC systems for operating rooms,surgery centers, hotels, cleanrooms etc, temperature regulation systems for the human body and other industrial sectors. Development activity in heat pipe and thermosyphon technology in asia in recent years is surveyed. Some new results obtained in Australia and other countries are also included.

Keywords: Heat pipe heat exchanger, Thermosyphone, effectiveness, HVAC system, energy saving, temperature regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3580
7180 Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria

Authors: M. Ouagued, A. Khellaf

Abstract:

The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.

Keywords: Direct solar irradiance, solar radiation in Algeria, solar parabolic trough collector, heat balance, thermal oil performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3618
7179 Numerical Simulation of Heat Exchanger Area of R410A-R23 and R404A-R508B Cascade Refrigeration System at Various Evaporating and Condensing Temperature

Authors: A. D. Parekh, P. R. Tailor

Abstract:

Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by reduction in the evaporator temperature. The single stage vapour compression refrigeration system is limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of main three heat exchangers namely condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser (HTS), cascade condenser and evaporator (LTS) for both systems have been compared and the effect of condensing and evaporating temperature on heat-transfer area for both systems have been studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condensing temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporating temperature (Te).

Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
7178 Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity

Authors: Bouchmel Mliki, Chaouki Ali, Mohamed Ammar Abbassi

Abstract:

In this numerical study, natural convection of Cu–water nanofluid in a cavity submitted to different heating modes on its vertical walls is analyzed. Maxwell-Garnetts (MG) and Brinkman models have been utilized for calculating the effective thermal conductivity and dynamic viscosity of nanofluid, respectively. Influences of Rayleigh number (Ra = 103−106), nanoparticle volume concentration (f = 0-0.04) and Hartmann number (Ha = 0-90) on the flow and heat transfer characteristics have been examined. The results indicate that the Hartmann number influences the heat transfer at Ra = 106 more than other Raleigh numbers, as the least effect is observed at Ra = 103. Moreover, the results show that the solid volume fraction has a significant influence on heat transfer, depending on the value of Hartmann, heat generation or absorption coefficient and Rayleigh numbers.

Keywords: Heat transfer, linearly/sinusoidally heated, Lattice Boltzmann Method, natural convection, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
7177 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

Authors: Tapano Kumar Hotta, S P Venkateshan

Abstract:

Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.

Keywords: Discrete heat source, mixed convection, natural convection, vertical channel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
7176 Performance Analysis of Heat Pipe Using Copper Nanofluid with Aqueous Solution of n-Butanol

Authors: Senthilkumar R, Vaidyanathan S, Sivaraman B

Abstract:

This study presents the improvement of thermal performance of heat pipe using copper nanofluid with aqueous solution of n-Butanol. The nanofluids kept in the suspension of conventional fluids have the potential of superior heat transfer capability than the conventional fluids due to their improved thermal conductivity. In this work, the copper nanofluid which has a 40 nm size with a concentration of 100 mg/lit is kept in the suspension of the de-ionized (DI) water and an aqueous solution of n-Butanol and these fluids are used as a working medium in the heat pipe. The study discusses about the effect of heat pipe inclination, type of working fluid and heat input on the thermal efficiency and thermal resistance. The experimental results are evaluated in terms of its performance metrics and are compared with that of DI water.

Keywords: copper nanofluid with aqueous solution of n-Butanol, heat pipe, thermal efficiency, thermal resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3370
7175 From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering

Authors: D. Zabala, Y. Cárdenas, G. Núñez

Abstract:

In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.

Keywords: Heat transfer experiment, thermal conductivity, finite difference, engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
7174 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture

Authors: Chul Ho Han, Kyoung Hoon Kim

Abstract:

This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.

Keywords: Entropy, exergy, ammonia-water mixture, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
7173 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow

Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani

Abstract:

Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.

Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
7172 Numerical Simulation of R410a-R23 and R404A-R508B Cascade Refrigeration System

Authors: A. D. Parekh, P. R. Tailor, Tejendra Patel

Abstract:

Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by a reduction in the evaporator temperature. The single stage vapour compression refrigeration system using various refrigerants are limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser, cascade condenser and evaporator for both systems are compared and the effect of condenser and evaporator temperature on heat-transfer area for both systems is studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condenser temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporator temperature (Te).

Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4521
7171 Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions

Authors: Abdenour Bourabaa, Mohamed Saighi, Said El Metenani

Abstract:

In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.

Keywords: Fin efficiency, heat and mass transfer, dehumidifying conditions, finned tube heat exchangers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
7170 Experimental Investigation of Heat Transfer on Vertical Two-Phased Closed Thermosyphon

Authors: M. Hadi Kusuma, Nandy Putra, Anhar Riza Antariksawan, Ficky Augusta Imawan

Abstract:

Heat pipe is considered to be applied as a passive system to remove residual heat that generated from reactor core when incident occur or from spent fuel storage pool. The objectives are to characterized the heat transfer phenomena, performance of heat pipe, and as a model for large heat pipe will be applied as passive cooling system on nuclear spent fuel pool storage. In this experimental wickless heat pipe or two-phase closed thermosyphon (TPCT) is used. Variation of heat flux are 611.24 Watt/m2 - 3291.29 Watt/m2. Variation of filling ratio are 45 - 70%. Variation of initial pressure are -62 to -74 cm Hg. Demineralized water is used as working fluid in the TPCT. The results showed that increasing of heat load leads to an increase of evaporation of the working fluid. The optimum filling ratio obtained for 60% of TPCT evaporator volume, and initial pressure variation gave different TPCT wall temperature characteristic. TPCT showed best performance with 60% filling ratio and can be consider to be applied as passive residual heat removal system or passive cooling system on spent fuel storage pool.

Keywords: Two-phase closed thermo syphon, heat pipe, passive cooling, spent fuel storage pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
7169 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: Non-Newtonian fluid, Power-law fluid, Natural convection, Heat transfer enhancement, Cavity, Wavy wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
7168 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient

Authors: Te Wen Tu, Sen Yung Lee

Abstract:

An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.

Keywords: Analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963