Search results for: Field Effect Scanning Electron Microscopy.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7050

Search results for: Field Effect Scanning Electron Microscopy.

7020 The Effect Particle Velocity on the Thickness of Thermally Sprayed Coatings

Authors: M. Jalali Azizpour, H. Mohammadi Majd

Abstract:

In this paper, the effect of WC-12Co particle velocity in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: Grinding, HVOF, Thermal spray, WC-Co.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
7019 Effect of Friction Stir Welding on Microstructural and Mechanical Properties of Copper Alloy

Authors: Dhananjayulu Avula, Ratnesh Kumar Raj Singh, D.K.Dwivedi, N.K.Mehta

Abstract:

This study demonstrates the feasibility of joining the commercial pure copper plates by friction stir welding (FSW). Microstructure, microhardness and tensile properties in terms of the joint efficiency were found 94.03 % compare to as receive base material (BM). The average hardness at the top was higher than bottom. Hardness of weld zone was higher than the base material. Different microstructure zones were revealed by optical microscopy and scanning electron microscopy. The stirred zone (SZ) exhibited primary two phases namely, recrystallized grains and fine precipitates in matrix of copper.

Keywords: Welding; FSW, Commercial Copper, Mechanical properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4480
7018 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites

Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı

Abstract:

Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.

Keywords: Electrospinning, characterization, composites, nanofiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
7017 Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation

Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More

Abstract:

A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.

Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
7016 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings

Authors: M. Jalali Azizpour, H. Mohammadi Majd

Abstract:

In this paper, the effect of WC-12Co particle temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: HVOF, Temperature, Thickness, Velocity, WC- 12Co.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
7015 Study of Encapsulation of Quantum Dots in Polystyrene and Poly (E-Caprolactone)Microreactors Prepared by Microvolcanic Eruption of Freeze Dried Microspheres

Authors: Deepak Kukkar, Inderpreet Kaur, Jagtar Singh, Lalit M Bharadwaj

Abstract:

Polymeric microreactors have emerged as a new generation of carriers that hold tremendous promise in the areas of cancer therapy, controlled delivery of drugs, for removal of pollutants etc. Present work reports a simple and convenient methodology for synthesis of polystyrene and poly caprolactone microreactors. An aqueous suspension of carboxylated (1μm) polystyrene latex particles was mixed with toluene solution followed by freezing with liquid nitrogen. Freezed particles were incubated at -20°C and characterized for formation of voids on the surface of polymer microspheres by Field Emission Scanning Electron Microscope. The hollow particles were then overnight incubated at 40ºC with unfunctionalized quantum dots (QDs) in 5:1 ratio. QDs Encapsulated polystyrene microcapsules were characterized by fluorescence microscopy. Likewise Poly ε-caprolactone microreactors were prepared by micro-volcanic rupture of freeze dried microspheres synthesized using emulsification of polymer with aqueous Poly vinyl alcohol and freezed with liquid nitrogen. Microreactors were examined with Field Emission Scanning Electron Microscope for size and morphology. Current study is an attempt to create hollow polymer particles which can be employed for microencapsulation of nanoparticles and drug molecules.

Keywords: FE-SEM, Microreactors, Microvolcanic rupture, Poly (ε-caprolactone), Polystyrene

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
7014 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics

Authors: S. M. Giripunje, Shikha Jindal

Abstract:

Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.

Keywords: Graphene, mobility, nanocomposites, photovoltaics, quantum dots, zinc sulphide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
7013 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
7012 Development of a Porous Silica Film by Sol-gel Process

Authors: Binay K. Dutta, Tayseir M. Abd Ellateif, Saikat Maitra

Abstract:

In the present work homogeneous silica film on silicon was fabricated by colloidal silica sol. The silica sol precursor with uniformly granular particle was derived by the alkaline hydrolysis of tetraethoxyorthosilicate (TEOS) in presence of glycerol template. The film was prepared by dip coating process. The templated hetero-structured silica film was annealed at elevated temperatures to generate nano- and meso porosity in the film. The film was subsequently annealed at different temperatures to make it defect free and abrasion resistant. The sol and the film were characterized by the measurement of particle size distribution, scanning electron microscopy, XRD, FTIR spectroscopy, transmission electron microscopy, atomic force microscopy, measurement of the refractive index, thermal conductivity and abrasion resistance. The porosity of the films decreased whereas refractive index and dielectric constant of it `increased with the increase in the annealing temperature. The thermal conductivity of the films increased with the increase in the film thickness. The developed porous silica film holds strong potential for use in different areas.

Keywords: Silica film, Nanoporous, Sol-gel, Templating, Dip coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042
7011 Analyses of Wear Mechanisms Occurring During Machining of the Titanium Alloy Ti- 6Al-2Sn-4Zr-6Mo

Authors: Z. Rihova, K. Saksl, C. Siemers, D. Ostroushko

Abstract:

Titanium alloys like the modern alloy Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) combine excellent specific mechanical properties and corrosion resistance. On the other hand,due to their material characteristics, machining of these alloys is difficult to perform. The aim of the current study is the analyses of wear mechanisms of coated cemented carbide tools applied in orthogonal cutting experiments of Ti-6246 alloy. Round bars were machined with standard coated tools in dry conditions on a CNC latheusing a wide range of cutting speeds and cutting depths. Tool wear mechanisms were afterwards investigated by means of stereo microscopy, optical microscopy, confocal microscopy and scanning electron microscopy. Wear mechanisms included fracture of the tool tip (total failure) and abrasion. Specific wear features like crater wear, micro cracks and built-up edgeformation appeared depending of the mechanical and thermal conditions generated in the workpiece surface by the cutting action.

Keywords: Alloy 6246, machining, tool wear, optical microscopy, SEM, EDX analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
7010 Residual Stresses in Thermally Sprayed Gas Turbine Components

Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi Majd

Abstract:

In this paper, the residual stress of thermal spray coatings in gas turbine component by curvature method has been studied. The samples and shaft were coated by hard WC-12Co cermets using high velocity oxy fuel (HVOF) after preparation in same conditions. The curvature of coated samples was measured by using of coordinate measurement machine (CMM). The metallurgical and Tribological studies has been made on the coated shaft using optical microscopy and scanning electron microscopy (SEM)

Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
7009 Investigation of the Effect of Milling Time on the Mechanochemical Synthesis of Fe3Al/ Al2O3 Nanocomposite

Authors: B. Ghasemi, A. A. Najafzadeh Khoee

Abstract:

In this study, the effect of mechanical activation on the synthesis of Fe3Al/Al2O3 nanocomposite has been investigated by using mechanochemical method. For this purpose, Aluminum powder and hematite as precursors, with stoichiometric ratio, have been utilized and other effective parameters in milling process were kept constant. Phase formation analysis, crystallite size measurement and lattice strain were studied by X-ray diffraction (XRD) by using Williamson-Hall method as well as microstructure and morphology were explored by Scanning electron microscopy (SEM). Also, Energy-dispersive X-ray spectroscopy (EDX) analysis was used in order to probe the particle distribution. The results showed that after 30-hour milling, the reaction was started, combustibly done and completed.

Keywords: hematite, mechanochemical, milling, nanocomposite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
7008 Effect of Different Types of Highly Consumed Beverages on the Surface Structure of Orthodontic Restorative Material

Authors: A. Alhazza, B. Alnaser

Abstract:

Orthodontic restorative materials are widely used for the direct restoration of teeth or for cosmetic dentistry purposes. These materials have helped to solve many dental problems, providing healthy and beautiful smiles for many patients. In this study, we aimed to investigate whether the pH value has an effect on the surface structure of a nanohybrid composite material. Five different types of highly consumed beverages were selected to examine their effect on the surface structure of the nanohybrid composite material. The beverages had different pH values in the range of 3–6, i.e., they were all acidic. The material was investigated under the hardest conditions of surface exposure to the drinks by immersing the material for a long period. The specimens were examined using scanning electron microscopy (SEM) at different magnifications to investigate the effect of these beverages on the morphology of the nanohybrid composite material discs. All specimens showed an effect including pores, cracks, protrusions, and surface roughness as a result of the beverages. The degree of effect differed from one experimental group to another, but there was no relationship between the pH (acidity) value and the degree of effect on the surface structure of the specimens.

Keywords: Acidity, beverage, SEM, dentistry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
7007 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries

Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.

Keywords: Ceramics, microstructure, electrochemical measurements, energy storage, transmission electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
7006 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif

Abstract:

The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.

Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
7005 Petrology Investigation of Apatite Minerals in the Esfordi Mine, Yazd, Iran

Authors: Haleh Rezaei Zanjirabadi, Fatemeh Saberi, Bahman Rahimzadeh, Fariborz Masoudi, Mohammad Rahgosha

Abstract:

In this study, apatite minerals from the iron-phosphate deposit of Yazd have been investigated within the microcontinent zone of Iran in the Zagros structural zone. The geological units in the Esfordi area belong to the pre-Cambrian to lower-Cambrian age, consisting of a succession of carbonate rocks (dolomite), shale, tuff, sandstone, and volcanic rocks. In addition to the mentioned sedimentary and volcanic rocks, the granitoid mass of Bahabad, which is the largest intrusive mass in the region, has intruded into the eastern part of this series and has caused its metamorphism and alteration. After collecting the available data, various samples of Esfordi’s apatite were prepared, and their mineralogy and crystallography were investigated using laboratory methods such as petrographic microscopy, Raman spectroscopy, EDS (Energy Dispersive Spectroscopy), and Scanning Electron Microscopy (SEM). In non-destructive Raman spectroscopy, the molecular structure of apatite minerals was revealed in four distinct spectral ranges. Initially, the spectra of phosphate and aluminum bonds with O2HO, OH, were observed, followed by the identification of Cl, OH, Al, Na, Ca and hydroxyl units depending on the type of apatite mineral family. In SEM analysis, based on various shapes and different phases of apatites, their constituent major elements were identified through EDS, indicating that the samples from the Esfordi mining area exhibit a dense and coherent texture with smooth surfaces. Based on the elemental analysis results by EDS, the apatites in the Esfordi area are classified into the calcic apatite group.

Keywords: Petrology, apatite, Esfordi, EDS, SEM, Scanning Electron Microscopy, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55
7004 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites

Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina

Abstract:

Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.

Keywords: Dispersion, multiwall carbon nanotubes, mechanical performance, sonication conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
7003 Synthesis and Characterization of Surface Functionalized Nanobiocomposite by Nano Hydroxyapatite

Authors: M. Meskinfam , M. S. Sadjadi , H. Jazdarreh

Abstract:

In this study, synthesis of biomemitic patterned nano hydroxyapatite-starch biocomposites using different concentration of starch to evaluate effect of polymer alteration on biocomposites structural properties has been reported. Formation of hydroxyapatite nano particles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the samples were characterized using scanning and transmission electron microscopy (SEM and TEM). It seems that by increasing starch content, the more active site of polymer (oxygen atoms) can be provided for interaction with Ca2+ followed by phosphate and hydroxyl group.

Keywords: Biocomposite, Biomimetic, Nano hydroxyapatite, Starch

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
7002 Detecting Subsurface Circular Objects from Low Contrast Noisy Images: Applications in Microscope Image Enhancement

Authors: Soham De, Nupur Biswas, Abhijit Sanyal, Pulak Ray, Alokmay Datta

Abstract:

Particle detection in very noisy and low contrast images is an active field of research in image processing. In this article, a method is proposed for the efficient detection and sizing of subsurface spherical particles, which is used for the processing of softly fused Au nanoparticles. Transmission Electron Microscopy is used for imaging the nanoparticles, and the proposed algorithm has been tested with the two-dimensional projected TEM images obtained. Results are compared with the data obtained by transmission optical spectroscopy, as well as with conventional circular object detection algorithms.

Keywords: Transmission Electron Microscopy, Circular Hough Transform, Au Nanoparticles, Median Filter, Laplacian Sharpening Filter, Canny Edge Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
7001 Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials are discussed. The addition of layered silicate into the polymer matrix increased the tensile and flexural modulus up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the mechanical properties which was traced to the existence of aggregation layers. Likewise, up to 1 wt.% clay loading, the thermal behaviour showed significant improvements and at higher clay loading the thermal pattern was reduced. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, mechanical properties, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3955
7000 Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont

Abstract:

TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.

Keywords: Silver nanoparticle, TiO2/Ag composite films, Optical properties, surface plasmon resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
6999 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge

Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq

Abstract:

Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.

Keywords: Crystallinity, glow discharge, nitriding, sputtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
6998 Optical Coherence Tomography Combined with the Confocal Microscopy Method and Fluorescence for Class V Cavities Investigations

Authors: M. Rominu, C. Sinescu, A.G. Podoleanu

Abstract:

The purpose of this study is to present a non invasive method for the marginal adaptation evaluation in class V composite restorations. Standardized class V cavities, prepared in human extracted teeth, were filled with Premise (Kerr) composite. The specimens were thermo cycled. The interfaces were examined by Optical Coherence Tomography method (OCT) combined with the confocal microscopy and fluorescence. The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source at 1300 nm. The scanning procedure is similar to that used in any confocal microscope, where the fast scanning is enface (line rate) and the depth scanning is much slower (at the frame rate). Gaps at the interfaces as well as inside the composite resin materials were identified. OCT has numerous advantages which justify its use in vivo as well as in vitro in comparison with conventional techniques.

Keywords: Class V Cavities, Marginal Adaptation, Optical Coherence Tomography Fluorescence, Confocal Microscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
6997 Preparation of Nanostructure ZnO-SnO2 Thin Films for Optoelectronic Properties and Post Annealing Influence

Authors: Vipin Kumar Jain, Praveen Kumar, Y.K. Vijay

Abstract:

ZnO-SnO2 i.e. Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO2 - 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO film were annealed at 450 0C in vacuum. These films were characterized to study the effect of annealing on the structural, electrical, and optical properties. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) images manifest the surface morphology of these ZTO thin films. The apparent growth of surface features revealed the formation of nanostructure ZTO thin films. The small value of surface roughness (root mean square RRMS) ensures the usefulness in optical coatings. The sheet resistance was also found to be decreased for both types of films with increasing concentration of SnO2. The optical transmittance found to be decreased however blue shift has been observed after annealing.

Keywords: ZTO thin film, AFM, SEM, Optical transmittance, Sheet resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
6996 Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, characterisations, contact angle measurement, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
6995 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene

Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi

Abstract:

In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis and tensile tests, in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.

Keywords: Failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177
6994 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher

Abstract:

This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.

Keywords: Physicochemical characterization of MFI, Ceramic hollow fibre, CO2, Ion-exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
6993 Deformation of Metallic Foams with Closed Cell at High Temperatures

Authors: Emrah Ersoy, Yusuf Özçatalbas

Abstract:

The aim of this study is to investigate formability of Al based closed cell metallic foams at high temperature. The foam specimens with rectangular section were produced from AlMg1Si0.6TiH20.8 alloy preform material. Bending and free bending tests based on gravity effect were applied to foam specimens at high temperatures. During the tests, the time-angular deformation relationships with various temperatures were determined. Deformation types formed in cell walls were investigated by means of Scanning Electron Microscopy (SEM) and optical microscopy. Bending deformation about 90° was achieved without any defect at high temperatures. The importance of a critical temperature and deformation rate was emphasized in maintaining the deformation. Significant slip lines on surface of cell walls at tensile zones of bending specimen were observed. At high strain rates, the microcrack formation in boundaries of elongated grains was determined.

Keywords: Al alloy, Closed cell, hot deformation, metallic foam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
6992 Highly Conductive Polycrystalline Metallic Ring in a Magnetic Field

Authors: Isao Tomita

Abstract:

Electrical conduction in a quasi-one-dimensional polycrystalline metallic ring with a long electron phase coherence length realized at low temperature is investigated. In this situation, the wave nature of electrons is important in the ring, where the electrical current I can be induced by a vector potential that arises from a static magnetic field applied perpendicularly to the ring’s area. It is shown that if the average grain size of the polycrystalline ring becomes large (or comparable to the Fermi wavelength), the electrical current I increases to ~I0, where I0 is a current in a disorder-free ring. The cause of this increasing effect is examined, and this takes place if the electron localization length in the polycrystalline potential increases with increasing grain size, which gives rise to coherent connection of tails of a localized electron wave function in the ring and thus provides highly coherent electrical conduction.

Keywords: Electrical Conduction, Electron Phase Coherence, Polycrystalline Metal, Magnetic Field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
6991 Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques

Authors: Hanan Alenezi

Abstract:

Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation.

Keywords: Energy Dispersive X-Ray Spectroscopy, EDS, membrane, Polyetherimide, PEI, Scanning electron microscope, SEM, Solvent, X-Ray Diffraction, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830