Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher
Abstract:
This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.
Keywords: Physicochemical characterization of MFI, Ceramic hollow fibre, CO2, Ion-exchange.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096117
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066References:
[1] Kalipcilar H, Falconer JL, Noble RD: Preparation of B-ZSM-5 membranes on a monolith support. J Membr Sci 2001, 149 (1):141-144.
[2] Piera E, Giroir-Fendler A, Dalmon JA, Moueddeb H, Coronas J, Menendez M, Santamaria J: Separation of alcohols and alcohols/O2 mixtures using zelite MFI membranes. J Membr Sci 1998, 142:97-109.
[3] Nishiyama N, Ichioka K, Egashira Y, Ueyama K, Gora L, Zhu W, Kapteijn F, Moulijn J: Référence 91_Chapitre de Anne Julpe. In in Proc ICIM8- 8th International Conference on Inorganic Membranes; Cincinnati, OH, (USA). Y.S. Lin, F.T. Akin (eds.); 2004: 216.
[4] Bowen TC, Kalipcilar H, Falconer JL, Noble RD: Pervaporation of organic/water mixtures through B-ZSM-5 zeolite membranes on monolith supports. J Mater Sci 2003, 215:235-247.
[5] Lai R, Yan Y, Gavalas GR: Growth of ZSM-5 films on alumina and other surfaces. Microp Mesop Mater 2000, 37:9-19.
[6] Lin Z, Rocha J, Navajas A, Tellez C, Coronas J, Santamaria J: Synthesis and characterisation of titanosilicate ETS-10 membranes. Microp Mesop Mater 2004, 67:79-86.
[7] Uemiya S, Sato N, Ando H, Kude Y, Matsuda T, Kikuchi E: Separation of hydrogen through palladium thin film supported on a porous glass tube J Membr Sci 1991, 56:303-313.
[8] Shelekhin AB, Pien S, Ma YH: Permeability, surface area, pore volume and pore size of Vycor glass membrane heat-treated at high temperatures. JMembr Sci 1995, 103:39-43.
[9] Li A, Xiong G, Gu J, Zheng L: Preparation of Pd/ceramic composite membrane, 1. Improvement of the conventional preparation technique. J Membr Sci 1996, 110:257-260.
[10] Lee D-W, Lee Y-G, Seung-Eun Nam, Ihm S-K, Lee K-H: Study on the variation of morphology and separation behavior of the stainless steel supported membranes at high temperature. J Membr Sci 2003, 220:137- 153.
[11] Armor JN: Applications of catalytic inorganic membrane reactors to refinery products. J Membr Sci 1998, 147:217-233.
[12] Dittmeyer R, Hollein V, Daub K: Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J Molecular Catalysis A: Chemical 2001, 173:135-184.
[13] Julbe A: Zeolite membranes - a short overview, in Studies in surface science and catalysis. Stud Surf Sci Catal 2005, 157 135-160.
[14] Ciavarella P: Etude expérimentale modilisation du transport gazeux dans les membranes zéolitiques de type MFI. Applicationà la deshydrogenation de l'isobutane en reacteurcatalytique à membrane. Thèse de Doctorat. Claude Bernard -LYON1, Ecole Chimie; 1999.
[15] S. Miachon, I. Kumakiri, P. Ciavarella, L. van Dyk, K. Fiaty, Y. Schuurman, J.-A. Dalmon, Nanocomposite MFI-alumina embranes via pore-plugging synthesis: Specific transport and separation properties, J. Membr. Sci. 298 (2007) 71.
[16] A. Alshebani, M. Pera-Titus, E. Landrivon, Th. Schiestel, S. Miachon, J.-A. Dalmon, Nanocomposite MFI - ceramic hollow fibres: prospects for CO2 separation, Micropor. Mesopor. Mater. 115 (2008) 197.
[17] S. Miachon, E. Landrivon, M. Aouine, Y. Sun, I. Kumakiri, Y. Li, O. Pachtová Prokopová, N. Guilhaume, A. Giroir-Fendler, H. Mozzanega, J.-A. Dalmon, Nanocomposite MFI-alumina membranes via poreplugging synthesis: Preparation and morphological characterisation, J. Membr. Sci. 281 (2006) 228.
[18] S. Miachon, I. Kumakiri, P. Ciavarella, L. van Dyk, K. Fiaty, Y. Schuurman, J.-A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis: Specific transport and separation properties, J. Membr. Sci. 298 (2007) 71.
[19] J. Hedlund, F. Jareman, A.-J. Bons, M. Anthonis, A masking technique for high quality MFI membranes, J. Membr. Sci. 222 (2003) 163.