Search results for: Discrete Time Model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12426

Search results for: Discrete Time Model.

12396 On a Discrete-Time GIX/Geo/1/N Queue with Single Working Vacation and Partial Batch Rejection

Authors: Shan Gao

Abstract:

This paper treats a discrete-time finite buffer batch arrival queue with a single working vacation and partial batch rejection in which the inter-arrival and service times are, respectively, arbitrary and geometrically distributed. The queue is analyzed by using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at prearrival, arbitrary and outside observer-s observation epochs. We also present probability generation function (p.g.f.) of actual waiting-time distribution in the system and some performance measures.

Keywords: Discrete-time, finite buffer, single working vacation, batch arrival, partial rejection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
12395 LMI Approach to Regularization and Stabilization of Linear Singular Systems: The Discrete-time Case

Authors: Salim Ibrir

Abstract:

Sufficient linear matrix inequalities (LMI) conditions for regularization of discrete-time singular systems are given. Then a new class of regularizing stabilizing controllers is discussed. The proposed controllers are the sum of predictive and memoryless state feedbacks. The predictive controller aims to regularizing the singular system while the memoryless state feedback is designed to stabilize the resulting regularized system. A systematic procedure is given to calculate the controller gains through linear matrix inequalities.

Keywords: Singular systems, Discrete-time systems, Regularization, LMIs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
12394 Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department

Authors: Mwafak Shakoor

Abstract:

The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department.

Keywords: Arena, Computed Tomography (CT), Discrete event simulation, Healthcare modeling, Radiology department, Waiting time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3490
12393 Bifurcation Analysis of a Plankton Model with Discrete Delay

Authors: Anuj Kumar Sharma, Amit Sharma, Kulbhushan Agnihotri

Abstract:

In this paper, a delayed plankton-nutrient interaction model consisting of phytoplankton, zooplankton and dissolved nutrient is considered. It is assumed that some species of phytoplankton releases toxin (known as toxin producing phytoplankton (TPP)) which is harmful for zooplankton growth and this toxin releasing process follows a discrete time variation. Using delay as bifurcation parameter, the stability of interior equilibrium point is investigated and it is shown that time delay can destabilize the otherwise stable non-zero equilibrium state by inducing Hopf-bifurcation when it crosses a certain threshold value. Explicit results are derived for stability and direction of the bifurcating periodic solution by using normal form theory and center manifold arguments. Finally, outcomes of the system are validated through numerical simulations.

Keywords: Plankton, Time delay, Hopf-bifurcation, Normal form theory, Center manifold theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
12392 Almost Periodic Sequence Solutions of a Discrete Cooperation System with Feedback Controls

Authors: Ziping Li, Yongkun Li

Abstract:

In this paper, we consider the almost periodic solutions of a discrete cooperation system with feedback controls. Assuming that the coefficients in the system are almost periodic sequences, we obtain the existence and uniqueness of the almost periodic solution which is uniformly asymptotically stable.

Keywords: Discrete cooperation model, almost periodic solution, feedback control, Lyapunov function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
12391 Sampling of Variables in Discrete-Event Simulation using the Example of Inventory Evolutions in Job-Shop-Systems Based on Deterministic and Non-Deterministic Data

Authors: Bernd Scholz-Reiter, Christian Toonen, Jan Topi Tervo, Dennis Lappe

Abstract:

Time series analysis often requires data that represents the evolution of an observed variable in equidistant time steps. In order to collect this data sampling is applied. While continuous signals may be sampled, analyzed and reconstructed applying Shannon-s sampling theorem, time-discrete signals have to be dealt with differently. In this article we consider the discrete-event simulation (DES) of job-shop-systems and study the effects of different sampling rates on data quality regarding completeness and accuracy of reconstructed inventory evolutions. At this we discuss deterministic as well as non-deterministic behavior of system variables. Error curves are deployed to illustrate and discuss the sampling rate-s impact and to derive recommendations for its wellfounded choice.

Keywords: discrete-event simulation, job-shop-system, sampling rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
12390 Stability Analysis of Neural Networks with Leakage, Discrete and Distributed Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

This paper deals with the problem of stability of neural networks with leakage, discrete and distributed delays. A new Lyapunov functional which contains some new double integral terms are introduced. By using appropriate model transformation that shifts the considered systems into the neutral-type time-delay system, and by making use of some inequality techniques, delay-dependent criteria are developed to guarantee the stability of the considered system. Finally, numerical examples are provided to illustrate the usefulness of the proposed main results.

Keywords: Neural networks, Stability, Time-varying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
12389 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: Linear systems, parametrization, Coprime Factorization, number of parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
12388 A Behavior Model of Discrete Sampling and Hold Amplifier based on AC Response

Authors: Wang Xing-hua, Zhong Shun-an, Zhang Zhuo

Abstract:

A kind of behavior model for discrete sampling and hold amplifier with charge transmission is analyzed. The transfer function and behavior features are based on the main AC responses of operation amplifier. The result used in pipelined and sigma-delta ADC shows the exact of model of sampling and hold amplifier, and the non-ideal factors are taken into account.

Keywords: SHA, response, behavior, transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
12387 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay

Authors: Ju H. Park, S.M. Lee

Abstract:

In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.

Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
12386 Conventional and PSO Based Approaches for Model Reduction of SISO Discrete Systems

Authors: S. K. Tomar, R. Prasad, S. Panda, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) discrete systems into lower order model, using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Modified Cauer Form (MCF) and differentiation are used. In this method the original discrete system is, first, converted into equivalent continuous system by applying bilinear transformation. The denominator of the equivalent continuous system and its reciprocal are differentiated successively, the reduced denominator of the desired order is obtained by combining the differentiated polynomials. The numerator is obtained by matching the quotients of MCF. The reduced continuous system is converted back into discrete system using inverse bilinear transformation. In the evolutionary technique method, Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Discrete System, Single Input Single Output (SISO), Bilinear Transformation, Reduced Order Model, Modified CauerForm, Polynomial Differentiation, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
12385 Frequency-Energy Characteristics of Local Earthquakes using Discrete Wavelet Transform(DWT)

Authors: O. H. Colak, T. C. Destici, S. Ozen, H. Arman, O. Cerezci

Abstract:

The wavelet transform is one of the most important method used in signal processing. In this study, we have introduced frequency-energy characteristics of local earthquakes using discrete wavelet transform. Frequency-energy characteristic was analyzed depend on difference between P and S wave arrival time and noise within records. We have found that local earthquakes have similar characteristics. If frequency-energy characteristics can be found accurately, this gives us a hint to calculate P and S wave arrival time. It can be seen that wavelet transform provides successful approximation for this. In this study, 100 earthquakes with 500 records were analyzed approximately.

Keywords: Discrete Wavelet Transform, Frequency-EnergyCharacteristics, P and S waves arrival time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
12384 Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm

Authors: J. S. Yadav, N. P. Patidar, J. Singhai

Abstract:

One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.

Keywords: Discrete System, Model Order Reduction, PIDController, Integral Squared Error, Differential Evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
12383 Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems

Authors: Chidentree Treesatayapun

Abstract:

A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.

Keywords: Neuro-Fuzzy, learning algorithm, nonlinear discrete time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
12382 A Discrete-Event-Simulation Approach for Logistic Systems with Real Time Resource Routing and VR Integration

Authors: Gerrit Alves, Jürgen Roßmann, Roland Wischnewski

Abstract:

Today, transport and logistic systems are often tightly integrated in the production. Lean production and just-in-time delivering create multiple constraints that have to be fulfilled. As transport networks often have evolved over time they are very expensive to change. This paper describes a discrete-event-simulation system which simulates transportation models using real time resource routing and collision avoidance. It allows for the specification of own control algorithms and validation of new strategies. The simulation is integrated into a virtual reality (VR) environment and can be displayed in 3-D to show the progress. Simulation elements can be selected through VR metaphors. All data gathered during the simulation can be presented as a detailed summary afterwards. The included cost-benefit calculation can help to optimize the financial outcome. The operation of this approach is shown by the example of a timber harvest simulation.

Keywords: Discrete-Event-Simulation, Logistic, Simulation, Virtual Reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
12381 Discrete Time Optimal Solution for the Connection Admission Control Problem

Authors: C. Bruni, F. Delli Priscoli, G. Koch, I. Marchetti

Abstract:

The Connection Admission Control (CAC) problem is formulated in this paper as a discrete time optimal control problem. The control variables account for the acceptance/ rejection of new connections and forced dropping of in-progress connections. These variables are constrained to meet suitable conditions which account for the QoS requirements (Link Availability, Blocking Probability, Dropping Probability). The performance index evaluates the total throughput. At each discrete time, the problem is solved as an integer-valued linear programming one. The proposed procedure was successfully tested against suitably simulated data.

Keywords: Connection Admission Control, Optimal Control, Integer valued Linear Programming, Quality of Service Requirements, Robust Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
12380 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem

Authors: Tarek Aboueldah, Hanan Farag

Abstract:

Parallel Job Shop Scheduling Problem (JSSP) is a multi-objective and multi constrains NP-optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution. Thus, we propose a hybrid Artificial Intelligence (AI) model with Discrete Breeding Swarm (DBS) added to traditional AI to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.

Keywords: Parallel Job Shop Scheduling Problem, Artificial Intelligence, Discrete Breeding Swarm, Car Sequencing and Operator Allocation, cost minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
12379 Dynamic Analyses for Passenger Volume of Domestic Airline and High Speed Rail

Authors: Shih-Ching Lo

Abstract:

Discrete choice model is the most used methodology for studying traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. In this study, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, different models are compared so as to propose the best one. From the results, systematic equations forecast better than single equation do. Models with the external variable, which is oil price, are better than models based on closed system assumption.

Keywords: forecasting, passenger volume, dynamic competition model, external variable, oil price

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
12378 External Effects on Dynamic Competitive Model of Domestic Airline and High Speed Rail

Authors: Shih-Ching Lo, Yu-Ping Liao

Abstract:

Social-economic variables influence transportation demand largely. Analyses of discrete choice model consider social-economic variables to study traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. Also, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, models with different social-economic variables, which are oil price, GDP per capita, CPI and economic growth rate, are compared. From the results, the model with the oil price is better than models with the other social-economic variables.

Keywords: forecasting, passenger volume, dynamic competitive model, social-economic variables, oil price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
12377 Transonic Flutter Analysis Using Euler Equation and Reduced Order Modeling Technique

Authors: D. H. Kim, Y. H. Kim, T. Kim

Abstract:

A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

Keywords: ROM (Reduced-Order Model), aero elasticity, AGARD 445.6 wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
12376 Testing the Performance of Rival Warehousing Policies through Discrete Event Simulation

Authors: João Vilas-Boas, Abdul Suleman, Luis Moreira

Abstract:

This research tested the performance of alternative warehouse designs concerning the picking process. The chosen performance measures were Travel Distance and Total Fulfilment Time. An explanatory case study was built up around a model implemented with SIMUL8. Hypotheses were set by selecting outcomes from the literature survey matching popular empirical findings. 17.4% reductions were found for Total Fulfilment Time and Resource Utilisation. The latter was then used as a proxy for operational efficiency. Literal replication of theoretical data-patterns was considered as an internal validity sign. Assessing the estimated changes benefits ahead of implementation was found to be a contribution to practice.

Keywords: Warehouse discrete-event simulation, Storage policy selection and assessment, Performance evaluation of order picking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
12375 Comparative Study of Fault Identification and Classification on EHV Lines Using Discrete Wavelet Transform and Fourier Transform Based ANN

Authors: K.Gayathri, N. Kumarappan

Abstract:

An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this paper. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are done on the basis of the multiresolution analysis. A comparative study of the performance is also presented for Discrete Fourier Transform (DFT) based Artificial Neural Network (ANN) and Discrete Wavelet Transform (DWT). The results prove that the proposed method is an effective and efficient one in obtaining the accurate result within short duration of time by using Daubechies 4 and 9. Simulation of the power system is done using MATLAB.

Keywords: EHV transmission line, Fault identification and classification, Discrete wavelet transform, Multiresolution analysis, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
12374 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

Authors: Siliang Wang, Minghui Wang, Jun Hu

Abstract:

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Keywords: pruning method, stochastic, time-varying networks, optimal path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
12373 Travel Time Model for Cylinder Type Parking System

Authors: Jing Zhang, Jie Chen

Abstract:

In this paper, we mainly analyze an automated parking system where the storage and retrieval requests are performed by a tower crane. In this parking system, the S/R crane which is located at the middle of the bottom of the cylinder parking area can rotate in both clockwise and counterclockwise and three kinds of movements can be done simultaneously. We develop some mathematical travel time models for the single command cycle under the random storage assignment using the characteristics of this system. Finally, we compare these travel models with discrete case and it is shown that these travel models display a good satisfactory performance.

Keywords: Parking system, travel time model, tower crane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
12372 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance

Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang

Abstract:

In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.

Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
12371 Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays

Authors: Mengzhuo Luo, Shouming Zhong

Abstract:

This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.

Keywords: Delay-dependent stability, Neural networks, Time varying delay, Linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
12370 Dynamical Behaviors in a Discrete Predator-prey Model with a Prey Refuge

Authors: Kejun Zhuang, Zhaohui Wen

Abstract:

By incorporating a prey refuge, this paper proposes new discrete Leslie–Gower predator–prey systems with and without Allee effect. The existence of fixed points are established and the stability of fixed points are discussed by analyzing the modulus of characteristic roots.

Keywords: Leslie-Gower, predator–prey model, prey refuge, allee effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
12369 Unsteady Transonic Aerodynamic Analysis for Oscillatory Airfoils using Time Spectral Method

Authors: Mohamad Reza. Mohaghegh, Majid. Malek Jafarian

Abstract:

This research proposes an algorithm for the simulation of time-periodic unsteady problems via the solution unsteady Euler and Navier-Stokes equations. This algorithm which is called Time Spectral method uses a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. It has shown tremendous potential for reducing the computational cost compared to conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy. The accuracy and efficiency of this technique is verified by Euler and Navier-Stokes calculations for pitching airfoils. Because of flow turbulence nature, Baldwin-Lomax turbulence model has been used at viscous flow analysis. The results presented by the Time Spectral method are compared with experimental data. It has shown tremendous potential for reducing the computational cost compared to the conventional time-accurate methods, by enforcing periodicity and using Fourier representation in time, leading to spectral accuracy, because results verify the small number of time intervals per pitching cycle required to capture the flow physics.

Keywords: Time Spectral Method, Time-periodic unsteadyflow, Discrete Fourier transform, Pitching airfoil, Turbulence flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
12368 Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode

Authors: Jiri Sebesta

Abstract:

Phase locked loops (PLL) and delay locked loops (DLL) play an important role in establishing coherent references (phase of carrier and symbol timing) in digital communication systems. Fully digital receiver including digital carrier synchronizer and symbol timing synchronizer fulfils the conditions for universal multi-mode communication receiver with option of symbol rate setting over several digit places and long-term stability of requirement parameters. Afterwards it is necessary to realize PLL and DLL in synchronizer in digital form and to approach to these subsystems as a discrete representation of analog template. Analysis of discrete phase locked loop (DPLL) or discrete delay locked loop (DDLL) and technique to determine their characteristics based on analog (continuous-time) template is performed in this posed paper. There are derived transmission response and error function for 1st order discrete locked loop and resulting equations and graphical representations for 2nd order one. It is shown that the spectrum translation due to sampling takes effect at frequency characteristics computing for specific values of loop parameters.

Keywords: Carrier synchronization, coherent demodulation, software defined receiver, symbol timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
12367 Positive Periodic Solutions in a Discrete Competitive System with the Effect of Toxic Substances

Authors: Changjin Xu, Qianhong Zhang

Abstract:

In this paper, a delayed competitive system with the effect of toxic substances is investigated. With the aid of differential equations with piecewise constant arguments, a discrete analogue of continuous non-autonomous delayed competitive system with the effect of toxic substances is proposed. By using Gaines and Mawhin,s continuation theorem of coincidence degree theory, a easily verifiable sufficient condition for the existence of positive solutions of difference equations is obtained.

Keywords: Competitive system, periodic solution, discrete time delay, topological degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414