Search results for: Demand Uncertainty.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1324

Search results for: Demand Uncertainty.

1324 Mind Your Product-Market Strategy on Selecting Marketing Inputs: An Uncertainty Approach in Indian Context

Authors: Susmita Ghosh, Bhaskar Bhowmick

Abstract:

Market is an important factor for start-ups to look into during decision-making in product development and related areas. Emerging country markets are more uncertain in terms of information availability and institutional supports. The literature review of market uncertainty reveals the need for identifying factors representing the market uncertainty. This paper identifies factors for market uncertainty using Exploratory Factor Analysis (EFA) and confirmed the number of factor retention using an alternative factor retention criterion ‘Parallel Analysis’. 500 entrepreneurs, engaged in start-ups from all over India participated in the study. This paper concludes with the factor structure of ‘market uncertainty’ having dimensions of uncertainty in industry orientation, uncertainty in customer orientation and uncertainty in marketing orientation.

Keywords: Uncertainty, market, orientation, competitor, demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1323 Confronting the Uncertainty of Systemic Innovation in Public Welfare Services

Authors: Harri Jalonen

Abstract:

Faced with social and health system capacity constraints and rising and changing demand for welfare services, governments and welfare providers are increasingly relying on innovation to help support and enhance services. However, the evidence reported by several studies indicates that the realization of that potential is not an easy task. Innovations can be deemed inherently complex to implement and operate, because many of them involve a combination of technological and organizational renewal within an environment featuring a diversity of stakeholders. Many public welfare service innovations are markedly systemic in their nature, which means that they emerge from, and must address, the complex interplay between political, administrative, technological, institutional and legal issues. This paper suggests that stakeholders dealing with systemic innovation in welfare services must deal with ambiguous and incomplete information in circumstances of uncertainty. Employing a literature review methodology and case study, this paper identifies, categorizes and discusses different aspects of the uncertainty of systemic innovation in public welfare services, and argues that uncertainty can be classified into eight categories: technological uncertainty, market uncertainty, regulatory/institutional uncertainty, social/political uncertainty, acceptance/legitimacy uncertainty, managerial uncertainty, timing uncertainty and consequence uncertainty.

Keywords: Systemic innovation, uncertainty, welfare services

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1322 On Solving Single-Period Inventory Model under Hybrid Uncertainty

Authors: Madhukar Nagare, Pankaj Dutta

Abstract:

Inventory decisional environment of short life-cycle products is full of uncertainties arising from randomness and fuzziness of input parameters like customer demand requiring modeling under hybrid uncertainty. Prior inventory models incorporating fuzzy demand have unfortunately ignored stochastic variation of demand. This paper determines an unambiguous optimal order quantity from a set of n fuzzy observations in a newsvendor inventory setting in presence of fuzzy random variable demand capturing both fuzzy perception and randomness of customer demand. The stress of this paper is in providing solution procedure that attains optimality in two steps with demand information availability in linguistic phrases leading to fuzziness along with stochastic variation. The first step of solution procedure identifies and prefers one best fuzzy opinion out of all expert opinions and the second step determines optimal order quantity from the selected event that maximizes profit. The model and solution procedure is illustrated with a numerical example.

Keywords: Fuzzy expected value, Fuzzy random demand, Hybrid uncertainty, Optimal order quantity, Single-period inventory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
1321 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
1320 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383
1319 Losses Analysis in TEP Considering Uncertainity in Demand by DPSO

Authors: S. Jalilzadeh, A. Kimiyaghalam, A. Ashouri

Abstract:

This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.

Keywords: DPSO, TEP, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
1318 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: Animal food, Stochastic linear programming, Production planning, Demand Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
1317 Uncertainty Propagation and Sensitivity Analysis During Calibration of an Integrated Land Use and Transport Model

Authors: Parikshit Dutta, Mathieu Saujot, Elise Arnaud, Benoit Lefevre, Emmanuel Prados

Abstract:

In this work, propagation of uncertainty during calibration process of TRANUS, an integrated land use and transport model (ILUTM), has been investigated. It has also been examined, through a sensitivity analysis, which input parameters affect the variation of the outputs the most. Moreover, a probabilistic verification methodology of calibration process, which equates the observed and calculated production, has been proposed. The model chosen as an application is the model of the city of Grenoble, France. For sensitivity analysis and uncertainty propagation, Monte Carlo method was employed, and a statistical hypothesis test was used for verification. The parameters of the induced demand function in TRANUS, were assumed as uncertain in the present case. It was found that, if during calibration, TRANUS converges, then with a high probability the calibration process is verified. Moreover, a weak correlation was found between the inputs and the outputs of the calibration process. The total effect of the inputs on outputs was investigated, and the output variation was found to be dictated by only a few input parameters.

Keywords: Uncertainty propagation, sensitivity analysis, calibration under uncertainty, hypothesis testing, integrated land use and transport models, TRANUS, Grenoble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1316 The Story of Mergers and Acquisitions: Using Narrative Theory to Understand the Uncertainty of Organizational Change

Authors: Philip T. Roundy

Abstract:

This paper examines the influence of communication form on employee uncertainty during mergers and acquisitions (M&As). Specifically, the author uses narrative theory to analyze how narrative organizational communication affects the three components of uncertainty – decreased predictive, explanatory, and descriptive ability. It is hypothesized that employees whose organizations use narrative M&A communication will have greater predictive, explanatory, and descriptive abilities than employees of organizations using non-narrative M&A communication. This paper contributes to the stream of research examining uncertainty during mergers and acquisitions and argues that narratives are an effective means of managing uncertainty in the mergers and acquisitions context.

Keywords: Narrative Theory, Mergers and Acquisitions, Employee Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
1315 Photon Localization inside a Waveguide Modeled by Uncertainty Principle

Authors: Shilpa N. Kulkarni, Sujata R. Patrikar

Abstract:

In the present work, an attempt is made to understand electromagnetic field confinement in a subwavelength waveguide structure using concepts of quantum mechanics. Evanescent field in the waveguide is looked as inability of the photon to get confined in the waveguide core and uncertainty of position is assigned to it. The momentum uncertainty is calculated from position uncertainty. Schrödinger wave equation for the photon is written by incorporating position-momentum uncertainty. The equation is solved and field distribution in the waveguide is obtained. The field distribution and power confinement is compared with conventional waveguide theory. They were found in good agreement with each other.

Keywords: photon localization in waveguide, photon tunneling, quantum confinement of light, Schrödinger wave equation, uncertainty principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
1314 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

Authors: Abdallah Al-Shammari

Abstract:

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution

Keywords: Linear programming, Petrochemicals, stability analysis, uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
1313 Uncertainty Multiple Criteria Decision Making Analysis for Stealth Combat Aircraft Selection

Authors: C. Ardil

Abstract:

Fuzzy set theory and its extensions (intuitionistic fuzzy sets, picture fuzzy sets, and neutrosophic sets) have been widely used to address imprecision and uncertainty in complex decision-making. However, they may struggle with inherent indeterminacy and inconsistency in real-world situations. This study introduces uncertainty sets as a promising alternative, offering a structured framework for incorporating both types of uncertainty into decision-making processes.This work explores the theoretical foundations and applications of uncertainty sets. A novel decision-making algorithm based on uncertainty set-based proximity measures is developed and demonstrated through a practical application: selecting the most suitable stealth combat aircraft.

The results highlight the effectiveness of uncertainty sets in ranking alternatives under uncertainty. Uncertainty sets offer several advantages, including structured uncertainty representation, robust ranking mechanisms, and enhanced decision-making capabilities due to their ability to account for ambiguity.Future research directions are also outlined, including comparative analysis with existing MCDM methods under uncertainty, sensitivity analysis to assess the robustness of rankings,and broader application to various MCDM problems with diverse complexities. By exploring these avenues, uncertainty sets can be further established as a valuable tool for navigating uncertainty in complex decision-making scenarios.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty proximity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
1312 Property Aggregation and Uncertainty with Links to the Management and Determination of Critical Design Features

Authors: Steven Whittle, Ingrida Valiusaityte

Abstract:

Within the domain of Systems Engineering the need to perform property aggregation to understand, analyze and manage complex systems is unequivocal. This can be seen in numerous domains such as capability analysis, Mission Essential Competencies (MEC) and Critical Design Features (CDF). Furthermore, the need to consider uncertainty propagation as well as the sensitivity of related properties within such analysis is equally as important when determining a set of critical properties within such a system. This paper describes this property breakdown in a number of domains within Systems Engineering and, within the area of CDFs, emphasizes the importance of uncertainty analysis. As part of this, a section of the paper describes possible techniques which may be used within uncertainty propagation and in conclusion an example is described utilizing one of the techniques for property and uncertainty aggregation within an aircraft system to aid the determination of Critical Design Features.

Keywords: Complex Systems, Critical Design Features, Property Aggregation, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
1311 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach

Authors: Saowaluck Ukrisdawithid

Abstract:

The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.

Keywords: Single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
1310 Modeling the Uncertainty of the Remanufacturing Process for Consideration of Extended Producer Responsibility (EPR)

Authors: Michael R. Johnson, Ian P. McCarthy

Abstract:

There is a growing body of evidence to support the proposition of product take back for remanufacturing particularly within the context of Extended Producer Responsibility (EPR). Remanufacturing however presents challenges unlike that of traditional manufacturing environments due to its high levels of uncertainty which may further distract organizations from considering its potential benefits. This paper presents a novel modeling approach for evaluating the uncertainty of part failures within the remanufacturing process and its impact on economic and environmental performance measures. This paper presents both the theoretical modeling approach and an example of its use in application.

Keywords: Remanufacturing, Demanufacturing, Extended Producer Responsibility, Sustainability, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
1309 Modeling Uncertainty in Multiple Criteria Decision Making Using the Technique for Order Preference by Similarity to Ideal Solution for the Selection of Stealth Combat Aircraft

Authors: C. Ardil

Abstract:

Uncertainty set theory is a generalization of fuzzy set theory and intuitionistic fuzzy set theory. It serves as an effective tool for dealing with inconsistent, imprecise, and vague information. The technique for order preference by similarity to ideal solution (TOPSIS) method is a multiple-attribute method used to identify solutions from a finite set of alternatives. It simultaneously minimizes the distance from an ideal point and maximizes the distance from a nadir point. In this paper, an extension of the TOPSIS method for multiple attribute group decision-making (MAGDM) based on uncertainty sets is presented. In uncertainty decision analysis, decision-makers express information about attribute values and weights using uncertainty numbers to select the best stealth combat aircraft.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144
1308 Variation of Uncertainty in Steady And Non-Steady Processes Of Queuing Theory

Authors: Om Parkash, C.P.Gandhi

Abstract:

Probabilistic measures of uncertainty have been obtained as functions of time and birth and death rates in a queuing process. The variation of different entropy measures has been studied in steady and non-steady processes of queuing theory.

Keywords: Uncertainty, steady state, non-steady state, trafficintensity, monotonocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
1307 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem

Authors: Abdolsalam Ghaderi

Abstract:

In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.

Keywords: Location-routing problem, robust optimization, Stochastic Programming, variable neighborhood search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
1306 Comparison of Reliability Systems Based Uncertainty

Authors: A. Aissani, H. Benaoudia

Abstract:

Stochastic comparison has been an important direction of research in various area. This can be done by the use of the notion of stochastic ordering which gives qualitatitive rather than purely quantitative estimation of the system under study. In this paper we present applications of comparison based uncertainty related to entropy in Reliability analysis, for example to design better systems. These results can be used as a priori information in simulation studies.

Keywords: Uncertainty, Stochastic comparison, Reliability, serie's system, imperfect repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
1305 Determination of Measurement Uncertainty in Extracting of Forming Limit Diagrams

Authors: M. Mahboubkhah, H. Fayazfar

Abstract:

In this research, Forming Limit Diagrams for supertension sheet metals which are using in automobile industry have been obtained. The exerted strains to sheet metals have been measured with four different methods and the errors of each method have also been represented. These methods have been compared with together and the most efficient and economic way of extracting of the exerted strains to sheet metals has been introduced. In this paper total error and uncertainty of FLD extraction procedures have been derived. Determination of the measurement uncertainty in extracting of FLD has a great importance in design and analysis of the sheet metal forming process.

Keywords: Forming Limit Diagram, Major and Minor Strain, Measurement Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
1304 Airport Investment Risk Assessment under Uncertainty

Authors: Elena M. Capitanul, Carlos A. Nunes Cosenza, Walid El Moudani, Felix Mora Camino

Abstract:

The construction of a new airport or the extension of an existing one requires massive investments and many times public private partnerships were considered in order to make feasible such projects. One characteristic of these projects is uncertainty with respect to financial and environmental impacts on the medium to long term. Another one is the multistage nature of these types of projects. While many airport development projects have been a success, some others have turned into a nightmare for their promoters. This communication puts forward a new approach for airport investment risk assessment. The approach takes explicitly into account the degree of uncertainty in activity levels prediction and proposes milestones for the different stages of the project for minimizing risk. Uncertainty is represented through fuzzy dual theory and risk management is performed using dynamic programming. An illustration of the proposed approach is provided.

Keywords: Airports, fuzzy logic, risk, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
1303 Finding Equilibrium in Transport Networks by Simulation and Investigation of Behaviors

Authors: Gábor Szűcs, Gyula Sallai

Abstract:

The goal of this paper is to find Wardrop equilibrium in transport networks at case of uncertainty situations, where the uncertainty comes from lack of information. We use simulation tool to find the equilibrium, which gives only approximate solution, but this is sufficient for large networks as well. In order to take the uncertainty into account we have developed an interval-based procedure for finding the paths with minimal cost using the Dempster-Shafer theory. Furthermore we have investigated the users- behaviors using game theory approach, because their path choices influence the costs of the other users- paths.

Keywords: Dempster-Shafer theory, S-O and U-Otransportation network, uncertainty of information, Wardropequilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
1302 A Framework of Monte Carlo Simulation for Examining the Uncertainty-Investment Relationship

Authors: George Yungchih Wang

Abstract:

This paper argues that increased uncertainty, in certain situations, may actually encourage investment. Since earlier studies mostly base their arguments on the assumption of geometric Brownian motion, the study extends the assumption to alternative stochastic processes, such as mixed diffusion-jump, mean-reverting process, and jump amplitude process. A general approach of Monte Carlo simulation is developed to derive optimal investment trigger for the situation that the closed-form solution could not be readily obtained under the assumption of alternative process. The main finding is that the overall effect of uncertainty on investment is interpreted by the probability of investing, and the relationship appears to be an invested U-shaped curve between uncertainty and investment. The implication is that uncertainty does not always discourage investment even under several sources of uncertainty. Furthermore, high-risk projects are not always dominated by low-risk projects because the high-risk projects may have a positive realization effect on encouraging investment.

Keywords: real options, geometric Brownian motion, mixeddiffusion-jump process, mean- reverting process, jump amplitudeprocess

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
1301 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning

Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour

Abstract:

In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.

Keywords: Decision criteria, decision making, sewer network planning, strict uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
1300 Sliding-Mode Control of a Permanent-Magnet Synchronous Motor with Uncertainty Estimation

Authors: Markus Reichhartinger, Martin Horn

Abstract:

In this paper, the application of sliding-mode control to a permanent-magnet synchronous motor (PMSM) is presented. The control design is based on a generic mathematical model of the motor. Some dynamics of the motor and of the power amplification stage remain unmodelled. This model uncertainty is estimated in realtime. The estimation is based on the differentiation of measured signals using the ideas of robust exact differentiator (RED). The control law is implemented on an industrial servo drive. Simulations and experimental results are presented and compared to the same control strategy without uncertainty estimation. It turns out that the proposed concept is superior to the same control strategy without uncertainty estimation especially in the case of non-smooth reference signals.

Keywords: sliding-mode control, Permanent-magnet synchronous motor, uncertainty estimation, robust exact differentiator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
1299 Proposed a Method for Increasing the Delivery Performance in Dynamic Supply Network

Authors: M. Safaei, M. Seifert, K. D. Thoben

Abstract:

Supply network management adopts a systematic and integrative approach to managing the operations and relationships of various parties in a supply network. The objective of the manufactures in their supply network is to reduce inventory costs and increase customer satisfaction levels. One way of doing that is to synchronize delivery performance. A supply network can be described by nodes representing the companies and the links (relationships) between these nodes. Uncertainty in delivery time depends on type of network relationship between suppliers. The problem is to understand how the individual uncertainties influence the total uncertainty of the network and identify those parts of the network, which has the highest potential for improving the total delivery time uncertainty.

Keywords: Delivery time uncertainty, Distribution function, Statistical method, Supply Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
1298 Integrating Life Cycle Uncertainties for Evaluating a Building Overall Cost

Authors: M. Arja, G. Sauce, B. Souyri

Abstract:

Overall cost is a significant consideration in any decision-making process. Although many studies were carried out on overall cost in construction, little has treated the uncertainties of real life cycle development. On the basis of several case studies, a feedback process was performed on the historical data of studied buildings. This process enabled to identify some factors causing uncertainty during the operational period. As a result, the research proposes a new method for assessing the overall cost during a part of the building-s life cycle taking account of the building actual value, its end-of-life value and the influence of the identified life cycle uncertainty factors. The findings are a step towards a higher level of reliability in overall cost evaluation taking account of some usually unexpected uncertainty factors.

Keywords: Asset management, building life cycle uncertainty, building value, overall cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1297 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology

Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian

Abstract:

Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.

Keywords: Energy in Buildings, Hardware in Loop, Modelica (Dymola), Monte Carlo Simulation, Uncertainty Propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
1296 A Study on Linking Upward Substitution and Fuzzy Demands in the Newsboy-Type Problem

Authors: Pankaj Dutta, Debjani Chakraborty

Abstract:

This paper investigates the effect of product substitution in the single-period 'newsboy-type' problem in a fuzzy environment. It is supposed that the single-period problem operates under uncertainty in customer demand, which is described by imprecise terms and modelled by fuzzy sets. To perform this analysis, we consider the fuzzy model for two-item with upward substitution. This upward substitutability is reasonable when the products can be stored according to certain attribute levels such as quality, brand or package size. We show that the explicit consideration of this substitution opportunity increase the average expected profit. Computational study is performed to observe the benefits of product's substitution.

Keywords: Fuzzy demand, Newsboy, Single-period problem, Substitution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
1295 Risk and Uncertainty in Aviation: A Thorough Analysis of System Vulnerabilities

Authors: C. V. Pietreanu, S. E. Zaharia, C. Dinu

Abstract:

Hazard assessment and risks quantification are key components for estimating the impact of existing regulations. But since regulatory compliance cannot cover all risks in aviation, the authors point out that by studying causal factors and eliminating uncertainty, an accurate analysis can be outlined. The research debuts by making delimitations on notions, as confusion on the terms over time has reflected in less rigorous analysis. Throughout this paper, it will be emphasized the fact that the variation in human performance and organizational factors represent the biggest threat from an operational perspective. Therefore, advanced risk assessment methods analyzed by the authors aim to understand vulnerabilities of the system given by a nonlinear behavior. Ultimately, the mathematical modeling of existing hazards and risks by eliminating uncertainty implies establishing an optimal solution (i.e. risk minimization).

Keywords: Control, human factor, optimization, risk management, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623