Search results for: variable neighborhood search.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1602

Search results for: variable neighborhood search.

1602 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem

Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh

Abstract:

This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.

Keywords: Distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
1601 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems

Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira

Abstract:

Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.

Keywords: Particle swarm optimization, migration, variable neighborhood search, multiobjective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
1600 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem

Authors: Abdolsalam Ghaderi

Abstract:

In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.

Keywords: Location-routing problem, robust optimization, Stochastic Programming, variable neighborhood search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
1599 A Hybrid Metaheuristic Framework for Evolving the PROAFTN Classifier

Authors: Feras Al-Obeidat, Nabil Belacel, Juan A. Carretero, Prabhat Mahanti,

Abstract:

In this paper, a new learning algorithm based on a hybrid metaheuristic integrating Differential Evolution (DE) and Reduced Variable Neighborhood Search (RVNS) is introduced to train the classification method PROAFTN. To apply PROAFTN, values of several parameters need to be determined prior to classification. These parameters include boundaries of intervals and relative weights for each attribute. Based on these requirements, the hybrid approach, named DEPRO-RVNS, is presented in this study. In some cases, the major problem when applying DE to some classification problems was the premature convergence of some individuals to local optima. To eliminate this shortcoming and to improve the exploration and exploitation capabilities of DE, such individuals were set to iteratively re-explored using RVNS. Based on the generated results on both training and testing data, it is shown that the performance of PROAFTN is significantly improved. Furthermore, the experimental study shows that DEPRO-RVNS outperforms well-known machine learning classifiers in a variety of problems.

Keywords: Knowledge Discovery, Differential Evolution, Reduced Variable Neighborhood Search, Multiple criteria classification, PROAFTN, Supervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1598 A Particle Swarm Optimization Approach for the Earliness-Tardiness No-Wait Flowshop Scheduling Problem

Authors: Sedighe Arabameri, Nasser Salmasi

Abstract:

In this researcha particle swarm optimization (PSO) algorithm is proposedfor no-wait flowshopsequence dependent setuptime scheduling problem with weighted earliness-tardiness penalties as the criterion (|, |Σ   " ).The smallestposition value (SPV) rule is applied to convert the continuous value of position vector of particles in PSO to job permutations.A timing algorithm is generated to find the optimal schedule and calculate the objective function value of a given sequence in PSO algorithm. Twodifferent neighborhood structures are applied to improve the solution quality of PSO algorithm.The first one is based on variable neighborhood search (VNS) and the second one is a simple one with invariable structure. In order to compare the performance of two neighborhood structures, random test problems are generated and solved by both neighborhood approaches.Computational results show that the VNS algorithmhas better performance than the other one especially for the large sized problems.

Keywords: minimization of summation of weighed earliness and tardiness, no-wait flowshop scheduling, particle swarm optimization, sequence dependent setup times

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
1597 Combining Variable Ordering Heuristics for Improving Search Algorithms Performance

Authors: Abdolreza Hatamlou, Yusef Farhang, Mohammad Reza Meybodi

Abstract:

Variable ordering heuristics are used in constraint satisfaction algorithms. Different characteristics of various variable ordering heuristics are complementary. Therefore we have tried to get the advantages of all heuristics to improve search algorithms performance for solving constraint satisfaction problems. This paper considers combinations based on products and quotients, and then a newer form of combination based on weighted sums of ratings from a set of base heuristics, some of which result in definite improvements in performance.

Keywords: Constraint Satisfaction Problems, Variable Ordering Heuristics, Combination, Search Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
1596 Investigating Sustainable Neighborhood Development in Jahanshahr

Authors: Khashayar Kashani Jou, Ilnaz Fathololoomi

Abstract:

Nowadays, access to sustainable development in cities is assumed as one of the most important goals of urban managers. In the meanwhile, neighborhood as the smallest unit of urban spatial organization has a substantial effect on urban sustainability. Hence, attention to and focus on this subject is highly important in urban development plans. The objective of this study is evaluation of the status of Jahanshahr Neighborhood in Karaj city based on sustainable neighborhood development indicators. This research has been applied based on documentary method and field surveys. Also, evaluating of Jahanshahr Neighborhood of Karaj shows that it has a high level in sustainability in physical and economical dimension while a low level in cultural and social dimension. For this purpose, this neighborhood as a semi-sustainable neighborhood must take measures for development of collective spaces and efficiency of utilizing the public neighborhood spaces via collaboration of citizens and officials.

Keywords: Neighborhood, Sustainable Development, Sustainable Neighborhood Development, Jahanshahr Neighborhood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
1595 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: Capacitated MRP, non-population search algorithms, linear programming, assembly flow shop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
1594 Fuzzy T-Neighborhood Groups Acting on Sets

Authors: Hazem. A. Khorshed, Mostafa A. El Gendy, Amer. Abd El-Razik

Abstract:

In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular Tneighborhood topology.

Keywords: Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
1593 Predicting Bankruptcy using Tabu Search in the Mauritian Context

Authors: J. Cheeneebash, K. B. Lallmamode, A. Gopaul

Abstract:

Throughout this paper, a relatively new technique, the Tabu search variable selection model, is elaborated showing how it can be efficiently applied within the financial world whenever researchers come across the selection of a subset of variables from a whole set of descriptive variables under analysis. In the field of financial prediction, researchers often have to select a subset of variables from a larger set to solve different type of problems such as corporate bankruptcy prediction, personal bankruptcy prediction, mortgage, credit scoring and the Arbitrage Pricing Model (APM). Consequently, to demonstrate how the method operates and to illustrate its usefulness as well as its superiority compared to other commonly used methods, the Tabu search algorithm for variable selection is compared to two main alternative search procedures namely, the stepwise regression and the maximum R 2 improvement method. The Tabu search is then implemented in finance; where it attempts to predict corporate bankruptcy by selecting the most appropriate financial ratios and thus creating its own prediction score equation. In comparison to other methods, mostly the Altman Z-Score model, the Tabu search model produces a higher success rate in predicting correctly the failure of firms or the continuous running of existing entities.

Keywords: Predicting Bankruptcy, Tabu Search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
1592 Sense of Territoriality and Revitalization of Neighborhood Centers in Boshrooyeh City

Authors: H. Farkisch, A.I. Che-Ani, V. Ahmadi, M. Surat

Abstract:

The role of neighborhood center as semi public (the balance space) is disappeared in bonding between private and public in new urbanism. In this way, a hierarchical principle in the traditional neighborhood center appears to create or develop the conditions for residents` relationships and belonging. This paper evaluates significant of hierarchical principles of the neighborhood center in residents` territoriality and its factors. In this way Miandeh neighborhood center from Boshrooyeh city was determined as a case study area. Results indicated that a hierarchical principle is the best instrument to improve the territoriality as the subcomponent of place belonging in residents. The findings help the urban designer to revitalization the neighborhoods and proceedings in organization of physical space.

Keywords: Belonging, Neighborhood center, Revitalization, Territoriality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1591 Measurement Scheme Improving for State Estimation Using Stochastic Tabu Search

Authors: T. Kerdchuen

Abstract:

This paper proposes the stochastic tabu search (STS) for improving the measurement scheme for power system state estimation. If the original measured scheme is not observable, the additional measurements with minimum number of measurements are added into the system by STS so that there is no critical measurement pair. The random bit flipping and bit exchanging perturbations are used for generating the neighborhood solutions in STS. The Pδ observable concept is used to determine the network observability. Test results of 10 bus, IEEE 14 and 30 bus systems are shown that STS can improve the original measured scheme to be observable without critical measurement pair. Moreover, the results of STS are superior to deterministic tabu search (DTS) in terms of the best solution hit.

Keywords: Measurement Scheme, Power System StateEstimation, Network Observability, Stochastic Tabu Search (STS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
1590 A New Heuristic Algorithm for the Classical Symmetric Traveling Salesman Problem

Authors: S. B. Liu, K. M. Ng, H. L. Ong

Abstract:

This paper presents a new heuristic algorithm for the classical symmetric traveling salesman problem (TSP). The idea of the algorithm is to cut a TSP tour into overlapped blocks and then each block is improved separately. It is conjectured that the chance of improving a good solution by moving a node to a position far away from its original one is small. By doing intensive search in each block, it is possible to further improve a TSP tour that cannot be improved by other local search methods. To test the performance of the proposed algorithm, computational experiments are carried out based on benchmark problem instances. The computational results show that algorithm proposed in this paper is efficient for solving the TSPs.

Keywords: Local search, overlapped neighborhood, travelingsalesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
1589 Adaptive Motion Estimator Based on Variable Block Size Scheme

Authors: S. Dhahri, A. Zitouni, H. Chaouch, R. Tourki

Abstract:

This paper presents an adaptive motion estimator that can be dynamically reconfigured by the best algorithm depending on the variation of the video nature during the lifetime of an application under running. The 4 Step Search (4SS) and the Gradient Search (GS) algorithms are integrated in the estimator in order to be used in the case of rapid and slow video sequences respectively. The Full Search Block Matching (FSBM) algorithm has been also integrated in order to be used in the case of the video sequences which are not real time oriented. In order to efficiently reduce the computational cost while achieving better visual quality with low cost power, the proposed motion estimator is based on a Variable Block Size (VBS) scheme that uses only the 16x16, 16x8, 8x16 and 8x8 modes. Experimental results show that the adaptive motion estimator allows better results in term of Peak Signal to Noise Ratio (PSNR), computational cost, FPGA occupied area, and dissipated power relatively to the most popular variable block size schemes presented in the literature.

Keywords: H264, Configurable Motion Estimator, VariableBlock Size, PSNR, Dissipated power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
1588 Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model

Authors: Siyuan Jing, Kun She

Abstract:

Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.

Keywords: attribute reduction, incomplete data, inconsistent data, tolerance neighborhood relation, rough sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
1587 Hybrid Artificial Immune System for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. This paper presents a hybrid artificial immune system for the JSSP with the objective of minimizing makespan. The proposed approach combines the artificial immune system, which has a powerful global exploration capability, with the local search method, which can exploit the optimal antibody. The antibody coding scheme is based on the operation based representation. The decoding procedure limits the search space to the set of full active schedules. In each generation, a local search heuristic based on the neighborhood structure proposed by Nowicki and Smutnicki is applied to improve the solutions. The approach is tested on 43 benchmark problems taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Artificial immune system, Job shop scheduling problem, Local search, Metaheuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1586 An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Genetic algorithm, Job shop scheduling problem, Local search, Meta-heuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1585 Network Reconfiguration for Load Balancing in Distribution System with Distributed Generation and Capacitor Placement

Authors: T. Lantharthong, N. Rugthaicharoencheep

Abstract:

This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. A method based on Tabu search algorithm, The Tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system with distributed generations and capacitors placement. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.

Keywords: Network reconfiguration, Distributed generation Capacitor placement, Load balancing, Optimization technique

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4194
1584 Matching Current Search with Future Postings

Authors: Kim Nee Goh, Viknesh Kumar Naleyah

Abstract:

Online trading is an alternative to conventional shopping method. People trade goods which are new or pre-owned before. However, there are times when a user is not able to search the items wanted online. This is because the items may not be posted as yet, thus ending the search. Conventional search mechanism only works by searching and matching search criteria (requirement) with data available in a particular database. This research aims to match current search requirements with future postings. This would involve the time factor in the conventional search method. A Car Matching Alert System (CMAS) prototype was developed to test the matching algorithm. When a buyer-s search returns no result, the system saves the search and the buyer will be alerted if there is a match found based on future postings. The algorithm developed is useful and as it can be applied in other search context.

Keywords: Matching algorithm, online trading, search, future postings, car matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
1583 New Enhanced Hexagon-Based Search Using Point-Oriented Inner Search for Fast Block Motion Estimation

Authors: Lai-Man Po, Chi-Wang Ting, Ka-Ho Ng

Abstract:

Recently, an enhanced hexagon-based search (EHS) algorithm was proposed to speedup the original hexagon-based search (HS) by exploiting the group-distortion information of some evaluated points. In this paper, a second version of the EHS is proposed with a new point-oriented inner search technique which can further speedup the HS in both large and small motion environments. Experimental results show that the enhanced hexagon-based search version-2 (EHS2) is faster than the HS up to 34% with negligible PSNR degradation.

Keywords: Inner search, fast motion estimation, block-matching, hexagon search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
1582 Personalization of Web Search Using Web Page Clustering Technique

Authors: Amol Bapuso Rajmane, Pradeep M. Patil, Prakash J. Kulkarni

Abstract:

The Information Retrieval community is facing the problem of effective representation of Web search results. When we organize web search results into clusters it becomes easy to the users to quickly browse through search results. The traditional search engines organize search results into clusters for ambiguous queries, representing each cluster for each meaning of the query. The clusters are obtained according to the topical similarity of the retrieved search results, but it is possible for results to be totally dissimilar and still correspond to the same meaning of the query. People search is also one of the most common tasks on the Web nowadays, but when a particular person’s name is queried the search engines return web pages which are related to different persons who have the same queried name. By placing the burden on the user of disambiguating and collecting pages relevant to a particular person, in this paper, we have developed an approach that clusters web pages based on the association of the web pages to the different people and clusters that are based on generic entity search.

Keywords: Entity resolution, information retrieval, graph based disambiguation, web people search, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
1581 Extending the Conceptual Neighborhood Graph of the Relations for the Semantic Adaptation of Multimedia Documents

Authors: Azze-Eddine Maredj, Nourredine Tonkin

Abstract:

The recent developments in computing and communication technology permit to users to access multimedia documents with variety of devices (PCs, PDAs, mobile phones...) having heterogeneous capabilities. This diversification of supports has trained the need to adapt multimedia documents according to their execution contexts. A semantic framework for multimedia document adaptation based on the conceptual neighborhood graphs was proposed. In this framework, adapting consists on finding another specification that satisfies the target constraints and which is as close as possible from the initial document. In this paper, we propose a new way of building the conceptual neighborhood graphs to best preserve the proximity between the adapted and the original documents and to deal with more elaborated relations models by integrating the relations relaxation graphs that permit to handle the delays and the distances defined within the relations.

Keywords: Conceptual Neighborhood Graph, Relaxation Graphs, Relations with Delays, Semantic Adaptation of Multimedia Documents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
1580 In Search of Excellence – Google vs Baidu

Authors: Linda, Sau-ling LAI

Abstract:

This paper compares the search engine marketing strategies adopted in China and the Western countries through two illustrative cases, namely, Google and Baidu. Marketers in the West use search engine optimization (SEO) to rank their sites higher for queries in Google. Baidu, however, offers paid search placement, or the selling of engine results for particular keywords to the higher bidders. Whereas Google has been providing innovative services ranging from Google Map to Google Blog, Baidu remains focused on search services – the one that it does best. The challenges and opportunities of the Chinese Internet market offered to global entrepreneurs are also discussed in the paper

Keywords: Search Engine, Web analytics, Google, Baidu

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
1579 Motion Area Estimated Motion Estimation with Triplet Search Patterns for H.264/AVC

Authors: T. Song, T. Shimamoto

Abstract:

In this paper a fast motion estimation method for H.264/AVC named Triplet Search Motion Estimation (TS-ME) is proposed. Similar to some of the traditional fast motion estimation methods and their improved proposals which restrict the search points only to some selected candidates to decrease the computation complexity, proposed algorithm separate the motion search process to several steps but with some new features. First, proposed algorithm try to search the real motion area using proposed triplet patterns instead of some selected search points to avoid dropping into the local minimum. Then, in the localized motion area a novel 3-step motion search algorithm is performed. Proposed search patterns are categorized into three rings on the basis of the distance from the search center. These three rings are adaptively selected by referencing the surrounding motion vectors to early terminate the motion search process. On the other hand, computation reduction for sub pixel motion search is also discussed considering the appearance probability of the sub pixel motion vector. From the simulation results, motion estimation speed improved by a factor of up to 38 when using proposed algorithm than that of the reference software of H.264/AVC with ignorable picture quality loss.

Keywords: Motion estimation, VLSI, image processing, search patterns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
1578 A Novel Approach to Improve Users Search Goal in Web Usage Mining

Authors: R. Lokeshkumar, P. Sengottuvelan

Abstract:

Web mining is to discover and extract useful Information. Different users may have different search goals when they search by giving queries and submitting it to a search engine. The inference and analysis of user search goals can be very useful for providing an experience result for a user search query. In this project, we propose a novel approach to infer user search goals by analyzing search web logs. First, we propose a novel approach to infer user search goals by analyzing search engine query logs, the feedback sessions are constructed from user click-through logs and it efficiently reflect the information needed for users. Second we propose a preprocessing technique to clean the unnecessary data’s from web log file (feedback session). Third we propose a technique to generate pseudo-documents to representation of feedback sessions for clustering. Finally we implement k-medoids clustering algorithm to discover different user search goals and to provide a more optimal result for a search query based on feedback sessions for the user.

Keywords: Data Preprocessing, Session Identification, Web log mining, Web Personalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1577 Sustaining the Social Memory in a Historic Neighborhood: The Case Study of Uch Dukkan Neighborhood in Ardabil City in Azerbaijani Region of Iran

Authors: Yousef Daneshvar Rouyandozagh, Ece. K. Açikgöz

Abstract:

Conservation of historical urban patterns in the traditional neighborhoods is a part of creating integrated urban environments that are socially more sustainable. Urbanization reflects on life conditions and social, physical, economical characteristics of the society. In this regard, historical zones and traditional regions are affected by dramatic interventions on these characteristics. This article focuses on the Uch Dukkan neighborhood located in Ardabil City in Azarbaijani region of Iran, which has been up to such interventions that leaded its transformation from the past to the present. After introducing a brief inventory of the main elements of the historical zone and the neighborhood; this study explores the changes and transformations in different periods; and their impacts on the quality of the environment and its social sustainability. The survey conducted in the neighborhood as part of this research study revealed that the Uch Dukkan neighborhood and the unique architectural heritage that it possesses have become more inactive physically and functionally in a decade. This condition requires an exploration and comparison of the present and the expected transformations of the meaning of social space from the most private unit to the urban scale. From this token, it is argued that an architectural point of view that is based on space order; use and meaning of space as a social and cultural image, should not be ignored. Based on the interplay between social sustainability, collective memory, and the urban environment, study aims to make the invisible portion of ignorance clear, that ends up with a weakness in defining the collective meaning of the neighborhood as a historic urban district. It reveals that the spatial possessions of the neighborhood are valuable not only for their historical and physical characteristics, but also for their social memory that is to be remembered and constructed further.

Keywords: Urban integrity, social sustainability, collective memory, social decay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
1576 A Context-Sensitive Algorithm for Media Similarity Search

Authors: Guang-Ho Cha

Abstract:

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Keywords: Context-sensitive search, image search, media search, similarity ranking, similarity search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 612
1575 Joint Adaptive Block Matching Search (JABMS) Algorithm

Authors: V.K.Ananthashayana, Pushpa.M.K

Abstract:

In this paper a new Joint Adaptive Block Matching Search (JABMS) algorithm is proposed to generate motion vector and search a best match macro block by classifying the motion vector movement based on prediction error. Diamond Search (DS) algorithm generates high estimation accuracy when motion vector is small and Adaptive Rood Pattern Search (ARPS) algorithm can handle large motion vector but is not very accurate. The proposed JABMS algorithm which is capable of considering both small and large motions gives improved estimation accuracy and the computational cost is reduced by 15.2 times compared with Exhaustive Search (ES) algorithm and is 1.3 times less compared with Diamond search algorithm.

Keywords: Adaptive rood pattern search, Block matching, Diamond search, Joint Adaptive search, Motion estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
1574 Neighborhood Sustainability Assessment in the New Developments of Tabriz (Case Study: Roshdieh)

Authors: Melisa Yazdan Panahi

Abstract:

Since, today in most countries around the world much attention is paid to planning the smallest unit in the city i.e. the residential neighborhoods to achieve sustainable urban development goals, a variety of assessment tools have been developed to assess and monitor the sustainability of new developments. One of the most reliable and widely used assessment tools is LEED-ND rating system. This paper whit the aim of assessing sustainability level of Roshdieh neighborhood in Tabriz, has introduced this rating system and applied it in the study area. The results indicate that Roshdieh has the potential of achieving the standards of sustainable neighborhoods, but the present situation is far from the ideal point.

Keywords: LEED-ND, Sustainable Neighborhood, New Developments, Tabriz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
1573 EnArgus: A Knowledge-Based Search Application for Energy Research Projects

Authors: Frederike Ohrem, Lukas Sikorski, Bastian Haarmann

Abstract:

Often the users of a semantic search application are facing the problem that they do not find appropriate terms for their search. This holds especially if the data to be searched is from a technical field in which the user does not have expertise. In order to support the user finding the results he seeks, we developed a domain-specific ontology and implemented it into a search application. The ontology serves as a knowledge base, suggesting technical terms to the user which he can add to his query. In this paper, we present the search application and the underlying ontology as well as the project EnArgus in which the application was developed.

Keywords: Information system, knowledge representation, ontology, semantic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698