Search results for: Control theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5080

Search results for: Control theory

4240 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh

Abstract:

The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.

Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
4239 LFC Design of a Deregulated Power System with TCPS Using PSO

Authors: H. Shayeghi, H.A. Shayanfar, A. Jalili

Abstract:

In the LFC problem, the interconnections among some areas are the input of disturbances, and therefore, it is important to suppress the disturbances by the coordination of governor systems. In contrast, tie-line power flow control by TCPS located between two areas makes it possible to stabilize the system frequency oscillations positively through interconnection, which is also expected to provide a new ancillary service for the further power systems. Thus, a control strategy using controlling the phase angle of TCPS is proposed for provide active control facility of system frequency in this paper. Also, the optimum adjustment of PID controller's parameters in a robust way under bilateral contracted scenario following the large step load demands and disturbances with and without TCPS are investigated by Particle Swarm Optimization (PSO), that has a strong ability to find the most optimistic results. This newly developed control strategy combines the advantage of PSO and TCPS and has simple stricture that is easy to implement and tune. To demonstrate the effectiveness of the proposed control strategy a three-area restructured power system is considered as a test system under different operating conditions and system nonlinearities. Analysis reveals that the TCPS is quite capable of suppressing the frequency and tie-line power oscillations effectively as compared to that obtained without TCPS for a wide range of plant parameter changes, area load demands and disturbances even in the presence of system nonlinearities.

Keywords: LFC, TCPS, Dregulated Power System, PowerSystem Control, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
4238 Analysis of Permanence and Extinction of Enterprise Cluster Based On Ecology Theory

Authors: Ping Liu, Yongkun Li

Abstract:

This paper is concerned with the permanence and extinction problem of enterprises cluster constituted by m satellite enterprises and a dominant enterprise. We present the model involving impulsive effect based on ecology theory, which effectively describe the competition and cooperation of enterprises cluster in real economic environment. Applying comparison theorem of impulsive differential equation, we establish sufficient conditions which ultimately affect the fate of enterprises: permanence, extinction, and co-existence. Finally, we present numerical examples to explain the economical significance of mathematical results.

Keywords: Enterprise cluster, permanence, extinction, impulsive, comparison theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
4237 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
4236 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: Matlab/Simulink, Model Predictive Control, Phase Locked Loop, Single Phase Inverter, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4507
4235 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR

Authors: Saeed Vaneshani, Hooshang Jazayeri-Rad

Abstract:

Fuzzy logic control (FLC) systems have been tested in many technical and industrial applications as a useful modeling tool that can handle the uncertainties and nonlinearities of modern control systems. The main drawback of the FLC methodologies in the industrial environment is challenging for selecting the number of optimum tuning parameters. In this paper, a method has been proposed for finding the optimum membership functions of a fuzzy system using particle swarm optimization (PSO) algorithm. A synthetic algorithm combined from fuzzy logic control and PSO algorithm is used to design a controller for a continuous stirred tank reactor (CSTR) with the aim of achieving the accurate and acceptable desired results. To exhibit the effectiveness of proposed algorithm, it is used to optimize the Gaussian membership functions of the fuzzy model of a nonlinear CSTR system as a case study. It is clearly proved that the optimized membership functions (MFs) provided better performance than a fuzzy model for the same system, when the MFs were heuristically defined.

Keywords: continuous stirred tank reactor (CSTR), fuzzy logiccontrol (FLC), membership function(MF), particle swarmoptimization (PSO)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163
4234 Urban Roads of Bhopal City

Authors: Anshu Gupta

Abstract:

Quality evaluation of urban environment is an integral part of efficient urban environment planning and management. The development of fuzzy set theory (FST) and the introduction of FST to the urban study field attempts to incorporate the gradual variation and avoid loss of information. Urban environmental quality assessment pertain to interpretation and forecast of the urban environmental quality according to the national regulation about the permitted content of contamination for the sake of protecting human health and subsistence environment . A strategic motor vehicle control strategy has to be proposed to mitigate the air pollution in the city. There is no well defined guideline for the assessment of urban air pollution and no systematic study has been reported so far for Indian cities. The methodology adopted may be useful in similar cities of India. Remote sensing & GIS can play significant role in mapping air pollution.

Keywords: GIS, Pollution, Remote Sensing, Urban.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
4233 Controllability of Efficiency of Antiviral Therapy in Hepatitis B Virus Infections

Authors: Shyam S.N. Perera

Abstract:

An optimal control problem for a mathematical model of efficiency of antiviral therapy in hepatitis B virus infections is considered. The aim of the study is to control the new viral production, block the new infection cells and maintain the number of uninfected cells in the given range. The optimal controls represent the efficiency of antiviral therapy in inhibiting viral production and preventing new infections. Defining the cost functional, the optimal control problem is converted into the constrained optimization problem and the first order optimality system is derived. For the numerical simulation, we propose the steepest descent algorithm based on the adjoint variable method. A computer program in MATLAB is developed for the numerical simulations.

Keywords: Virus infection model, Optimal control, Adjoint system, Steepest descent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
4232 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
4231 The Emission Spectra Due to Exciton-Exciton Collisions in GaAs/AlGaAs Quantum Well System

Authors: Surendra K Pandey

Abstract:

Optical emission based on excitonic scattering processes becomes important in dense exciton systems in which the average distance between excitons is of the order of a few Bohr radii but still below the exciton screening threshold. The phenomena due to interactions among excited states play significant role in the emission near band edge of the material. The theory of two-exciton collisions for GaAs/AlGaAs quantum well systems is a mild attempt to understand the physics associated with the optical spectra due to excitonic scattering processes in these novel systems. The four typical processes considered give different spectral shape, peak position and temperature dependence of the emission spectra. We have used the theory of scattering together with the second order perturbation theory to derive the radiative power spontaneously emitted at an energy ħω by these processes. The results arrived at are purely qualitative in nature. The intensity of emitted light in quantum well systems varies inversely to the square of temperature, whereas in case of bulk materials it simply decreases with the  temperature.

Keywords: Exciton-Exciton Collisions, Excitonic Scattering Processes, Interacting Excitonic States, Quantum Wells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
4230 Customer Audits as a Quality Control Tool for Both Suppliers and Customers

Authors: Denisa Ferenčíková, Petr Briš

Abstract:

Customer audits are generally used to ensure customer that supplier is continuously able to meet his requirements while supplying him required products and services. However, customer audits can be considered as a very useful quality control tool for suppliers as well. In our paper, we analyzed the process of customer audits realized in Czech companies from both perspectives: a supplier´s viewpoint and customer´s viewpoint. At the end, we tried to emphasize some areas that should not be omitted during the audit process.

Keywords: Customer Audit, Quality Control, Quality Management, Product Quality, Service Quality, Process Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3956
4229 Capacity Flexibility within Production

Authors: Johannes Nywlt, Julian Becker, Sebastian Bertsch

Abstract:

Due to high dynamics in current markets the expectations regarding logistics increase steadily. However, the complexity and variety of products and production make it difficult to understand the interdependencies between logistical objectives and their determining factors. Therefore specific models are needed to meet this challenge. The Logistic Operating Curves Theory is such a model. With its aid the basic correlations between the logistic objectives can be described. Within this model the capacity flexibility represents an important parameter. However, a proper mathematical description for this parameter is still missing. Within this paper such a description will be developed in order to make the Logistic Operating Curves Theory more accurate.

Keywords: Capacity flexibility, Production controlling, Production logistics, Production management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
4228 Designing a Football Team of Robots from Beginning to End

Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi

Abstract:

The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.

Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
4227 Swarm Navigation in a Complex Environment

Authors: Jai Raj, Jito Vanualailai, Bibhya Sharma, Shonal Singh

Abstract:

This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.

Keywords: Swarm, practical stability, motion planning, emergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
4226 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Finite element method, geometrical nonlinearity, bistable, quadrilateral plate elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
4225 Multirate Neural Control for AUV's Increased Situational Awareness during Diving Tasks Using Stochastic Model

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory for a nontrivial mid-small size AUV “r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of noises, and also can be concluded that the proposed research technique will be useful for fast SA of similar AUV systems in real-time search-and-rescue operations.

Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
4224 Comparing Test Equating by Item Response Theory and Raw Score Methods with Small Sample Sizes on a Study of the ARTé: Mecenas Learning Game

Authors: Steven W. Carruthers

Abstract:

The purpose of the present research is to equate two test forms as part of a study to evaluate the educational effectiveness of the ARTé: Mecenas art history learning game. The researcher applied Item Response Theory (IRT) procedures to calculate item, test, and mean-sigma equating parameters. With the sample size n=134, test parameters indicated “good” model fit but low Test Information Functions and more acute than expected equating parameters. Therefore, the researcher applied equipercentile equating and linear equating to raw scores and compared the equated form parameters and effect sizes from each method. Item scaling in IRT enables the researcher to select a subset of well-discriminating items. The mean-sigma step produces a mean-slope adjustment from the anchor items, which was used to scale the score on the new form (Form R) to the reference form (Form Q) scale. In equipercentile equating, scores are adjusted to align the proportion of scores in each quintile segment. Linear equating produces a mean-slope adjustment, which was applied to all core items on the new form. The study followed a quasi-experimental design with purposeful sampling of students enrolled in a college level art history course (n=134) and counterbalancing design to distribute both forms on the pre- and posttests. The Experimental Group (n=82) was asked to play ARTé: Mecenas online and complete Level 4 of the game within a two-week period; 37 participants completed Level 4. Over the same period, the Control Group (n=52) did not play the game. The researcher examined between group differences from post-test scores on test Form Q and Form R by full-factorial Two-Way ANOVA. The raw score analysis indicated a 1.29% direct effect of form, which was statistically non-significant but may be practically significant. The researcher repeated the between group differences analysis with all three equating methods. For the IRT mean-sigma adjusted scores, form had a direct effect of 8.39%. Mean-sigma equating with a small sample may have resulted in inaccurate equating parameters. Equipercentile equating aligned test means and standard deviations, but resultant skewness and kurtosis worsened compared to raw score parameters. Form had a 3.18% direct effect. Linear equating produced the lowest Form effect, approaching 0%. Using linearly equated scores, the researcher conducted an ANCOVA to examine the effect size in terms of prior knowledge. The between group effect size for the Control Group versus Experimental Group participants who completed the game was 14.39% with a 4.77% effect size attributed to pre-test score. Playing and completing the game increased art history knowledge, and individuals with low prior knowledge tended to gain more from pre- to post test. Ultimately, researchers should approach test equating based on their theoretical stance on Classical Test Theory and IRT and the respective  assumptions. Regardless of the approach or method, test equating requires a representative sample of sufficient size. With small sample sizes, the application of a range of equating approaches can expose item and test features for review, inform interpretation, and identify paths for improving instruments for future study.

Keywords: Effectiveness, equipercentile equating, IRT, learning games, linear equating, mean-sigma equating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
4223 The Fundamental Reliance of Iterative Learning Control on Stability Robustness

Authors: Richard W. Longman

Abstract:

Iterative learning control aims to achieve zero tracking error of a specific command. This is accomplished by iteratively adjusting the command given to a feedback control system, based on the tracking error observed in the previous iteration. One would like the iterations to converge to zero tracking error in spite of any error present in the model used to design the learning law. First, this need for stability robustness is discussed, and then the need for robustness of the property that the transients are well behaved. Methods of producing the needed robustness to parameter variations and to singular perturbations are presented. Then a method involving reverse time runs is given that lets the world behavior produce the ILC gains in such a way as to eliminate the need for a mathematical model. Since the real world is producing the gains, there is no issue of model error. Provided the world behaves linearly, the approach gives an ILC law with both stability robustness and good transient robustness, without the need to generate a model.

Keywords: Iterative learning control, stability robustness, monotonic convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
4222 Enhancement of MIMO H2S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array

Authors: Muhammad M. A. S. Mahmoud

Abstract:

Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H2S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. New design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.

Keywords: Gas separator, gas sweetening, intelligent controller, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
4221 Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: Neural network predictive controller, situational awareness, vectored thrust aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
4220 Energy Efficient Resource Allocation in Distributed Computing Systems

Authors: Samee Ullah Khan, C. Ardil

Abstract:

The problem of mapping tasks onto a computational grid with the aim to minimize the power consumption and the makespan subject to the constraints of deadlines and architectural requirements is considered in this paper. To solve this problem, we propose a solution from cooperative game theory based on the concept of Nash Bargaining Solution. The proposed game theoretical technique is compared against several traditional techniques. The experimental results show that when the deadline constraints are tight, the proposed technique achieves superior performance and reports competitive performance relative to the optimal solution.

Keywords: Energy efficient algorithms, resource allocation, resource management, cooperative game theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
4219 A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty

Authors: S. Z. Sayed Hassen

Abstract:

The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.

Keywords: Robust control, power system, integral action, minimax LQG control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
4218 Hybrid Fuzzy Selecting-Control-by- Range Controllers of a Servopneumatic Fatigue System

Authors: Marco Soares dos Santos, Jorge Augusto Ferreira, Camila Nicola Boeri, Fernando Neto da Silva

Abstract:

The present paper proposes high performance nonlinear force controllers for a servopneumatic real-time fatigue test machine. A CompactRIO® controller was used, being fully programmed using LabVIEW language. Fuzzy logic control algorithms were evaluated to tune the integral and derivative components in the development of hybrid controllers, namely a FLC P and a hybrid FLC PID real-time-based controllers. Their behaviours were described by using state diagrams. The main contribution is to ensure a smooth transition between control states, avoiding discrete transitions in controller outputs. Steady-state errors lower than 1.5 N were reached, without retuning the controllers. Good results were also obtained for sinusoidal tracking tasks from 1/¤Ç to 8/¤Ç Hz.

Keywords: Hybrid Fuzzy Selecting, Control, Range Controllers, Servopneumatic Fatigue System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
4217 Stability of Homogeneous Smart Beams based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies stability of homogeneous beams with piezoelectric layers subjected to axial load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter and foundation coefficient on the stability of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Homogeneous beam- Piezoelectric layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
4216 Control Strategies for a Robot for Interaction with Children with Autism Spectrum Disorder

Authors: Vinicius Binotte, Guilherme Baldo, Christiane Goulart, Carlos Valadão, Eliete Caldeira, Teodiano Bastos

Abstract:

Socially assistive robotic has become increasingly active and it is present in therapies of people affected for several neurobehavioral conditions, such as Autism Spectrum Disorder (ASD). In fact, robots have played a significant role for positive interaction with children with ASD, by stimulating their social and cognitive skills. This work introduces a mobile socially-assistive robot, which was built for interaction with children with ASD, using non-linear control techniques for this interaction.

Keywords: Socially assistive robotics, mobile robot, autonomous control, autism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
4215 Enhanced Data Access Control of Cooperative Environment used for DMU Based Design

Authors: Wei Lifan, Zhang Huaiyu, Yang Yunbin, Li Jia

Abstract:

Through the analysis of the process digital design based on digital mockup, the fact indicates that a distributed cooperative supporting environment is the foundation conditions to adopt design approach based on DMU. Data access authorization is concerned firstly because the value and sensitivity of the data for the enterprise. The access control for administrators is often rather weak other than business user. So authors established an enhanced system to avoid the administrators accessing the engineering data by potential approach and without authorization. Thus the data security is improved.

Keywords: access control, DMU, PLM, virtual prototype.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
4214 Granulation using Clustering and Rough Set Theory and its Tree Representation

Authors: Girish Kumar Singh, Sonajharia Minz

Abstract:

Granular computing deals with representation of information in the form of some aggregates and related methods for transformation and analysis for problem solving. A granulation scheme based on clustering and Rough Set Theory is presented with focus on structured conceptualization of information has been presented in this paper. Experiments for the proposed method on four labeled data exhibit good result with reference to classification problem. The proposed granulation technique is semi-supervised imbibing global as well as local information granulation. To represent the results of the attribute oriented granulation a tree structure is proposed in this paper.

Keywords: Granular computing, clustering, Rough sets, datamining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
4213 Fall Avoidance Control of Wheeled Inverted Pendulum Type Robotic Wheelchair While Climbing Stairs

Authors: Nan Ding, Motoki Shino, Nobuyasu Tomokuni, Genki Murata

Abstract:

The wheelchair is the major means of transport for physically disabled people. However, it cannot overcome architectural barriers such as curbs and stairs. In this paper, the authors proposed a method to avoid falling down of a wheeled inverted pendulum type robotic wheelchair for climbing stairs. The problem of this system is that the feedback gain of the wheels cannot be set high due to modeling errors and gear backlash, which results in the movement of wheels. Therefore, the wheels slide down the stairs or collide with the side of the stairs, and finally the wheelchair falls down. To avoid falling down, the authors proposed a slider control strategy based on skyhook model in order to decrease the movement of wheels, and a rotary link control strategy based on the staircase dimensions in order to avoid collision or slide down. The effectiveness of the proposed fall avoidance control strategy was validated by ODE simulations and the prototype wheelchair.

Keywords: EPW, fall avoidance control, skyhook, wheeled inverted pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
4212 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation

Authors: W. Du, X. Wang, Jun Cao, H. F. Wang

Abstract:

Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.

Keywords: Frequency regulation, virtual inertia control, installation locations, observability, wind farms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
4211 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: Virtual active power filter, V2G technology, model predictive control, electric vehicle, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963