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Optimized Fuzzy Control by Particle Swarm
Optimization Technigue for Control of CSTR

Saeed Vaneshani and Hooshang Jaz-Rac

Abstract—Fuzzy logic control (FLC) systems have been tested
many technical and industrial applications as duliseodeling tool
that can handle the uncertainties and nonlinearifenodern control
systems. The main drawback of the FLC methodologmeghe
industrial environment is challenging for selectitt;e number of
optimum tuning parameters.

In this paper, a method has been proposed formfinttie optimum
membership functions of a fuzzy system using partiswarm
optimization (PSO) algorithm. A synthetic algorittmambined from
fuzzy logic control and PSO algorithm is used tsige a controller
for a continuous stirred tank reactor (CSTR) witie taim of
achieving the accurate and acceptable desiredtse$al exhibit the
effectiveness of proposed algorithm, it is used ofimize the
Gaussian membership functions of the fuzzy modeh afonlinear
CSTR system as a case study. It is clearly prokatthe optimized
membership functions (MFs) provided better perforogathan a
fuzzy model for the same system, when the MFs ergistically
defined.

minimizing the output error measures or maximizing
performance indexes. The PSO optimization technigue
stochastic search through an n-dimensional probégpaice
aiming the minimization (or maximization) of the jettive
function of the problem [2]. Specifically, PSO-Flalyorithm
can be applied for the Concentration Control of BST

This paper uses from a control strategy based @n th
combination of fuzzy logic and particle swarm op#ation
techniques. The purpose is to control the conceéoiraf the
CSTR in the presence of the set point changes. MWL
software is used for designing and simulatingse controllers
and simulating in. The performance of the proposed
controllers has been considered based on the stime sfjuare
error (SSE). The results clearly show that the F&O-
control strategy gives an acceptable performantle respect
to the functional changes of the process. Furthezmfoizzy
based structure strategy gives more flexibility gomcise
behavior in control action in comparison to thestesquare

Keywords—continuous stirred tank reactor (CSTR), fuzzy logipased approach.

control (FLC), membership function(MF), particle am
optimization (PSO)

|. INTRODUCTION

CONTINUES Stirred Tank Reactor (CSTR) is an importan

branch of studies in chemical processes. Theretheze
is a various range of researches about CSTR iaree of the
chemical and control engineering. Various contppraaches

have been used to control the CSTR parameters. RCS$

involves complex reactions with high nonlinearignd it is
very hard to be controlled by the conventional radgh[11].
However, to avoid computational complexity broughtby
such nonlinear controllers, FLC can be a simple suithble
alternative [10]. The main reasons for startingappear the
powerful and flexible methods are the limitatiorigraditional
approaches in dealing with constraints [13].

Bio-inspired intelligent computing has been suchglys
applied to solve the complex problem in recent y¢a4]. The
PSO algorithm and fuzzy logic expressed the higtabgity
to overcome the issues mentioned previously [14F8ss of
the fuzzy logic, remarks the robustness of thishoetin real
environment application [8]. But, there is the neéefficient
method for tuning the MFs with the aim of

Saeed Vaneshani. Instrumentation and AutomatioraBeent, Petroleum
University of Technology, Ahwaz, IRAN. (phone:+989988-6330; e-mail:
saeed.vaneshani@ yahoo.com).

Hooshang Jazayeri-Rad. Instrumentation and Autemafepartment,
Petroleum University of Technology, Ahwaz, IRAN.h@me:+98-916-968-
6485; e-mail: jaz_rad_h@ yahoo.com)

Il. Fuzzy CONTROLLERALGORITHM

Fuzzy logic controllers (FLCs) are organized based
fkilled knowledge that is in the form of rule-badszhavior.
n general the FLC rules are explicit in the fodfninput 1 is
A and input 2 is B then output is C.
where antecedents A and B are declared by MFs[4].
There are two types of expressions for consequdi].dn
agaki-Sugeno-type FLCs, the C is expressed aqearli
combination of all inputs. On the other hand, ifamdani-
type of FLC is used, C is expressed by a set of[B]FShe
procedure that is used to calculate the overaltrobaction in
FLC is determined by different type of defuzzifioat
process. In general, a centre of area (CoA) meihagsually
used, where the output u* is computed as [5,8]:

. jumo(u)du
u=+>-———
.[mo(u)du

The fundamental FLC loop is shown in Fig. 1. It sists of
three major serial steps, namely Fuzzification,elahce
engine and Defuzzification [9]. Fuzzifications centva crisp
value (real-value) into a member of fuzzy sets, levhi
defuzzification converts the fuzzy output deterndirey the
inference engine into a crisp value [6].

1)
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Fuzzy Logic control Block

lu y
Fuzzifier |—» "gz;:gea Defuzzifier ——» Proces#—»

Fig. 1Block diagram for the FLC algoritk

lll. PARTICLE SWARM OPTIMIZATION

An optimization method that finds the optimal swuat
using a population of particles [2] BSO algorithr. Each
swarm of PSO is a solution in the solution spache
algorithm can be explainexs follows [1]:

 Each individual particlé has the following properties:
current position in search spagg, a current velocitypiq, and
a personal best position in search spage, p

» The personal best positigng, corresponds to the positit
in search space where particlpresents the smallest error
determined by the objective functiof, assuming a
minimization task.

» The global best position marked by representgptsition
yielding the lowest error amongst all thg.
During the iteration every particle in the swarnudated using th
following two equations:

Vig (t+1)=w. Vg (046, (Rg X (0)+G, 5 - (R X (DX2)
Xig(t+1)=Xiq (O+Vig (t+1) (3)

where \fy(t+1) and \ (t) are the updated and curn
particles velocities, respectively,igXt + 1) and 24 (t) are
the updated and current particles positions, resgdg c;

and ¢ are two positive constants andand I, are normalized
unit random numbers withithe range [0,l]), anw is the

inertia weight.

Mutate
Swarm

[ gbest = Best Solution ]

Fig. 2Flow chart depicting the General PSO Algori

IV. OPTIMAL FLC DESIGN

The approach of using a PSO for MF tuning in FLC
shown in Fig.3. In the proposed PSO process, each partit
shaped to represent the MF parameters of the Flipsts
and outputs. As the aim of the PSO is to minimiz ¢ontrol
error of the FLC, the objective function of PSQé&fined as
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f(x(k)):i £? 4)

Where t is the total running time of the FLG, is the
Control error.

FLC
AR N A "
Inference .
Fuzzifier Engine [\ efuzzifier Plant ¢

Fig. 3 ThePSC-FLC method

The model consists of mut-input single-output (MISO)
system with n number of inputs. Thumber of fuzzy sets for
the inputs are m, Ny ,.., M.

There are some assumptions in the model formule
These assumptions must be defined and availabéelvance
as a basic integration of this hybrid algorithm. €
assumptions are listed as belc

(i) Gaussian membership functions were used foutind
output variables.

(i) Complete rulebase was considered. A r-base is
considered complete when all possible combinatafnisput
membership functions of all the input variablestipgrate in
fuzzy rule-base formation.

The integration between optimizatialgorithm and fuzzy
logic problem is as follow:

() The parameters are the mean value and stal
deviation of each fuzzy membership functi

(i) These parameters act as particles anking for the
global best fitness.

(iii) It starts with an initial set of paramete

(iv) After the parameters had been adjusted u
optimization method, this parameter will be usedheck the
performance of the fuzzy logi

(v) This process is repeated until the goal iseadl.

The optimization method as shown Fig. 4 starts with the
initial set of parameters and employs the fithagsction to
obtain new values for the parameters of the merhhe
function. These new Waes will be used in the case stt
considered in this paper.

These particle dimensions represent fuzzy memige
function parameter values. The first column sholes input
and output variables. All input and output MFs bme
different depending on their new positi(The particle size for
representing the Gaussianembership functions of input a
output variables for a moda given by () and (6).

Particles Dimension for Input Variab:

n
> (2m) ®
i=1
where, n number of input variables and - number of fuzzy

sets.
Particles Dimension for Output Varia:

1SN1:0000000091950263
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n _

() (6)

where,n - number of output véables anct - number of fuzzy
sets. The particle dimensions required for enapdlive fuzzy —SedlEutm
model can be obtained in table 1

START

¥
‘ Initialization ‘

Coolant out

¥
‘ Ewvaluate the initial particles to get phest and ghest ‘
v

Product out

— Next iteration =t~ | Fig. 5The schematic of CSTR[1
pd
| Get particle positions \ A common chemical system in many chemical proces
¥

plants, known as a continuous stirred tank rea@&TR), is

Evaluate updated particles to get new phest and ghest ‘ L. . s
‘ utilized as a suitable test for P-Fuzzy control. within the

h 4

Update furzy set parameters (mean value ¢ and CSTR two chemicals are mixed, and react to proda
standard deviation O ) to build Fuzzy MF model product compound with coentration Ca(t). The temperature
of the mixture is T(t) A schematic representation of !

No . . . . .
system is shown in Figl. The reaction is exotherm
producing heat reduce the reaction rate. By intcody a

Yes
‘ Get the optimal fuzzy set values ‘ coolant flow rate qc(t), the temperature can bered and
hence the product concentration controlled. Thistesy car
END be described by following nonlinear simultaneousiagigpns
Fig. 4Flowchart of Particle Swarm Optimization tdjust Fuzzy ~ Which effectively combine the laws of chemical ezt and
Membership Function thermodynamic:
TABLE | — _ _ E/RT(t) 7
PARTICLE DIMENSION FOR REPRESENTING FUZZY MODE Ca(t) = A(Cap ~Co M)V —kiCy(D)E (7)
c g c g ... C g RO
- _ E/RT(t
Jgf‘;tl X11  X11 X12 X12 ~oxam oxam 2m 1O =90 =TO))/V +kC (e +kqC(t).
Input
varsp X21 X2l X2 X22 .. .. X2m  X2m  2m2 = ek3/qc(t))(l-co ~T(t)) ®)
ot TABLE Il
vaE#r Xnl Xnl Xn2 Xn2 ... .. Xnm  Xnm  2mn THE CSTR PARAMETER
parameter value
output so-1
variabl YL YL Y2 Y2 .. .. Yt Yt 2t Process flow rate (| min ™) 100
o Feed ConcentratiorC_ (mol I™*) 1
Feed temperature) (K) 350
These particle dimensiongpresent fuzzy memberst Inlet coolant temperatur T, (K) 350
function parameter values. The first column sholes input c0
and output variabledn this column, number represents CSTR volumey () 100
input variable. Because MISO system was considers Heat transfer termhA(cal min K™*)  7x1@
model only one output variable is used here BecMl8O Reaction rate constark (min") 7 2% 10°
system was considered as model.
First row describe mean value and standard dewiatit Activation energy termE (K) 10°
each membership function. The number of membe ‘ R )
function represent untiin variables. In the last column, Z Heat of reactionAH (cal mol™) -2x10°
can be noted which means that 2 positions had bs«d and Liquid densities,p, p, (gI™) 10°

unlimited untilmvariables. Specific heatsC |,C . (cal g*K*) 1

V. PROCESS DESCRIPTIONND MODEL

To demonstrate the effectiveness of the proposé&a-FLC VI SMULATION AND RESULTS

method, a nonlinear system is simulated. In pdeicthe case ~ TO solve the CSTR model equations numerically

considered in this paper is a fiaear CSTR benchmai €quationbased simulator should be used, in this article
model as shown in Fig. 5. MATLAB simulink environment is carried ot
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Fig. 6shows the feedback control system used to cons Membership function picts  Piat points: 11
the control system. In this diagram y (k) is thépo signal of b T owwl Tms Tz T oes’ Tem | eb
the plant, g(k) is the set point signal, and egkthe error. I
was implemented in MATLABwhere controllers wer
designed independently to follow the input as cles
possible.

input variable "error"

Fig. 7input MFs for conventional FL

gk~ efk) k)
} CSTR —

v

—(+—— FHC
p—
- Membership function plots  PIot points |j|
Hp b nNs ZE Ps D p:a
a3
(e semsor  o——
\\ //
. = s - ..l-:.!utpl.; \;rlabrel-"comr:l:mal“l- B o o
Sibdo nalee Fig. 8output MFs for conventional FL

Fig. 6Block diagram of the fuzzy control syste . . )
Fig. 8 represents the schematic of the CSTR simd

As it shown in Fig5, uncertainty is added to the syste model implemented in the MATLAB Simulink environmie

output as random noise with normal distribution. e ]
reference input is stable and without noise butféieelback a Seven fuzzy rules have been considered to construct the fuzzy
the summing junction is noisy since we introdu rulebase Theserulesare asfollows:
deliberately noise for simulating the overall isting If (e is NB) then (valve is Pl
uncertainty in the system. In consequence, theraimts If (e is NM) then (valve is PN
inputs e(k) (error) contain uncertain data. If (e is NS) then (valve is P
The FLC outputs are equal to required temperathamges If (e is ZE) then (valve is ZI
of coolant operator valve to achieve desired comatiar. To If (e is PS) then (valve is N
control the process, tweuzzy controllers (Conventional FLi If (e is PM) then (valve is NN
PSO tuned FLC) is used and the results are comy If (e is PB) then (valve is NI
Gaussian shapes are considered for the membe
functions. For such functions seven input and dugpe usec  For the FLC, the minimum operator is used as -inorm,
with the locations and centers that are showFig. 7 and 8. and centroid methoaf defuzzificatior
Gaussian shape is selected because it is a consirfunction ~ To evaluate the merit of each fuzzy controller, Sefnthe
and can be easily coded in a digital computer. fimaber of Square Error (SSE) that is given by equati9) is used as
fuzzy sets is chosen arbitrary, however increasiegn will Pperformance criteria.
increase the number of control rules at the litib@rovenent

Nogohkrwhpk

benefit. The relative location of their center vk adjuste: g \72
automatically using our proposed tuning method iasudsec F= Z [e( J )} ©)
later. 1=

A.Conventional FLC where ethe difference between the set point and the ad

The initial MFs of the FLC for the inputs and outp@are output at they sampling, and, is the number of sampling
shown in Fig6 and 7, seven fuzzy Gauss MFs are defined: instants.
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NB, NM, NS, ZE, PS, PM, and PB. The universe of discc
for these MFs are in the range df,[4] and their initial mear
are -1, -0.66,0.33, 0, 0.33, 0.66 and 1 respectively. The in
standard deviation for all MFs is 0.14. Sevuzzy rules have
been considered to construct the fuzzy rule badeasm takel
follows. Fuzzy controllers have been designed and te
based on Mamdani inference mechanism.
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Fig. 9CSTR simulated model in Simulink with P- FLC
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B. PSO tuned FLC TABLE Il
. . . MF PARAMETERS BEFOREAND AFTERTHE PSO
All of The MFs used in this FLC are Gaussian forffke ME Before PSO After PSO
parameters that define the MFs are the mean vahradhe output Mean(c) STD§) Mean(c) STD§)
standard deviatiord of each MF. The membership function NB -1 0.14 -1.03 0.14
is defined as: NM -0.66 0.14 -0.58 0.1
’ () (20%) NS -0.33 0.14 -0.33 0.18
— A (x-C o ZE 0 0.14 -0 0.06
fi(X)=¢€ (10) PS 0.33 0.14 0.33 0.17
PM 0.66 0.14 0.59 0.09
. _ PB 1 0.14 0.94 0.14
Fig. 10 and 11, show the optimized MFs of FLC ME Before PSO After PSO
respectively. This criterion is used by PSO to eatd the output Mean(c) STD§) Mean(c) STD§)
fitness of each candidate solution. This criterisrused by NB -1 0.14 -1.03 0.14
PSO to evaluate the fitness of each candidateispluSince NM -0.66 0.14 -0.58 0.1
. NS -0.33 0.14 -0.33 0.18
there are 7 input MFs and 7 output MFs, there dotah of 28 7E 0 014 0 0.06
parameters that need to be tuned. Therefore, iIP8@, each PS 0.33 0.14 0.33 0.17
particle is to have 28 dimensions. It is set thegre are 50 PM 0.66 0.14 0.59 0.09
particles in the swarm and the total searchingitens are set PB 1 T0-1 = 0.94 0.1
ABLE

to be 200. The inertiav factor was set to be 0.5 and weighting

factorsc; andc, were set to be 1.2and 0.8, respectively (see
Table IIl). The objective function that evaluatég fitness of Control Structure SSE
each particle was defined as (9). Therefore, afterproper
tuning of the MFs, the FLC will have a minimizedntw| conventional FLC 27.23
error. Table IV shows the MF parameters before aftet the

PSO tuning process. tuned FLC(PSO-FLC) 22.68

SSE FORTHE FLC AND Pso- FLC

Membership function plots  plot points: 181

HE MK NS ZE PS PR PB

Set Point 4

0115 —— FLC

ol b
§ i f
ol

Concentration

-0.8 -0.6 -0.4 -0.2 a 0.2 o 0.6 0.8
input wariable “input1™

Fig. 10 Optimized input MFs for PSO- FLC

Membership function plote  plot points: 181 0.075 | i L I
T T T o 5 0 15 20 b1 0

B ' N "ns ZE PS P " B Time

Fig. 13 Step response for FLC

Set Point -

ois —— PS5O - FLCH

ocutput variable "output1™ [0 =

Fig. 11 Optimized output MFs for PSO- FLC

Concentration

TABLE Ill
PSOPARAMETERS FOR CSTHPROBLEM
Parameter Value 1
C 1.2 . , ‘. “ . ]
C, 0.8 ’ ? B Time g #
Inertiaw factor 0.5 Fig. 14 Step response for PSO-FLC
Number of particle 50 ) _
Searching iterationg 200 Comparison between the control results obtainean ff/d.C
Fitness SSE and PSO-FLC (in Fig. 13 and 14 respectively) cleatHows
that PSO-FLC has more accurate and acceptablaseather

than conventional FLC in control of the concentratiof a
CSTR in presence of additive random noise. Theeefibris
clear that the PSO-FLC control can achieve there@siutput
better than conventional FLC.The superior of PS@: Fdver
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than FLC also can be seen in Tableshere the sum of square
error (SSE) of PSO-FLC is less than conventional FL

VII. CONCLUSION

The results show clearly, that the optimized FLG hatter
performance in compare with a conventional corgroin
presence of additive random noise. The concentratioa
CSTR is controlled by means of two different fuzzy
controllers. According to the results of the congput
simulation, the FLC with PSO algorithm is bettearihthe
conventional FLC without PSO algorithm. The major
disadvantage of the fuzzy controller is lacking lgieal
technique design (the selection of the rules, tenbership
functions and the scaling factors). Therefore tf®OHLC
controller gives robustness improvement and vepdgesults
in compare with the conventional FLC controller.
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