
 

 

 
Abstract—Fuzzy logic control (FLC) systems have been tested in 

many technical and industrial applications as a useful modeling tool 
that can handle the uncertainties and nonlinearities of modern control 
systems. The main drawback of the FLC methodologies in the 
industrial environment is challenging for selecting the number of 
optimum tuning parameters. 

In this paper, a method has been proposed for finding the optimum 
membership functions of a fuzzy system using particle swarm 
optimization (PSO) algorithm. A synthetic algorithm combined from 
fuzzy logic control and PSO algorithm is used to design a controller 
for a continuous stirred tank reactor (CSTR) with the aim of 
achieving the accurate and acceptable desired results. To exhibit the 
effectiveness of proposed algorithm, it is used to optimize the 
Gaussian membership functions of the fuzzy model of a nonlinear 
CSTR system as a case study. It is clearly proved that the optimized 
membership functions (MFs) provided better performance than a 
fuzzy model for the same system, when the MFs were heuristically 
defined. 
 

Keywords—continuous stirred tank reactor (CSTR), fuzzy logic 
control (FLC), membership function(MF), particle swarm 
optimization (PSO) 

I. INTRODUCTION 

ONTINUES Stirred Tank Reactor (CSTR) is an important 

branch of studies in chemical processes. Therefore, there 
is a various range of researches about CSTR in the area of the 
chemical and control engineering. Various control approaches 
have been used to control the CSTR parameters.  CSTR 
involves complex reactions with high nonlinearity, and it is 
very hard to be controlled by the conventional methods [11]. 
However, to avoid computational complexity brought in by 
such nonlinear controllers, FLC can be a simple and suitable 
alternative [10]. The main reasons for starting to appear the 
powerful and flexible methods are the limitations of traditional 
approaches in dealing with constraints [13]. 

Bio-inspired intelligent computing has been successfully 
applied to solve the complex problem in recent years [14]. The 
PSO algorithm and fuzzy logic expressed the high capability 
to overcome the issues mentioned previously [14].Success of 
the fuzzy logic, remarks the robustness of this method in real 
environment application [8]. But, there is the need of efficient 
method for tuning the MFs with the aim of 
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minimizing the output error measures or maximizing 
performance indexes. The PSO optimization technique is a 
stochastic search through an n-dimensional problem space 
aiming the minimization (or maximization) of the objective 
function of the problem [2]. Specifically, PSO-FLC algorithm 
can be applied for the Concentration Control of CSTR. 

This paper uses from a control strategy based on the 
combination of fuzzy logic and particle swarm optimization 
techniques. The purpose is to control the concentration of the 
CSTR in the presence of the set point changes. MATLAB 
software is used for designing and simulating those controllers 
and simulating in. The performance of the proposed 
controllers has been considered based on the sum of the square 
error (SSE). The results clearly show that the PSO-FLC 
control strategy gives an acceptable performance with respect 
to the functional changes of the process. Furthermore, fuzzy 
based structure strategy gives more flexibility and precise 
behavior in control action in comparison to the least square 
based approach. 

II. FUZZY CONTROLLER ALGORITHM   

Fuzzy logic controllers (FLCs) are organized based on 
skilled knowledge that is in the form of rule-based behavior. 
In general the FLC rules are explicit in the form: If input 1 is 
A and input 2 is B then output is C. 
where antecedents A and B are declared by MFs [4].  

There are two types of expressions for consequent C [7]. In 
Tagaki-Sugeno-type FLCs, the C is expressed as a linear 
combination of all inputs. On the other hand, if a Mamdani-
type of FLC is used, C is expressed by a set of MFs[3]. The 
procedure that is used to calculate the overall control action in 
FLC is determined by different type of defuzzification 
process. In general, a centre of area (CoA) method is usually 
used, where the output u* is computed as [5,8]: 

 

*
( )

( )

o

o

um u du
u

m u du
= ∫
∫

                                                         (1) 

 
The fundamental FLC loop is shown in Fig. 1. It consists of 

three major serial steps, namely Fuzzification, Inference 
engine and Defuzzification [9]. Fuzzifications convert a crisp 
value (real-value) into a member of fuzzy sets, while 
defuzzification converts the fuzzy output determined by the 
inference engine into a crisp value [6]. 
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Fig. 1 Block diagram for the FLC algorithm
 

III.  PARTICLE SWARM OPTIMIZATION 

  An optimization method that finds the optimal solution 
using a population of particles [2] is PSO algorithm
swarm of PSO is a solution in the solution space. The 
algorithm can be explained as follows [1]: 

• Each individual particle i has the following properties: A 
current position in search space, xid, a current velocity, 
a personal best position in search space, pid

• The personal best position, pid, corresponds to the position 
in search space where particle i presents the smallest error as 
determined by the objective function 
minimization task.  

• The global best position marked by represents the position 
yielding the lowest error amongst all the p
During the iteration every particle in the swarm is updated using the 
following two equations:  

id id 1 1 id id 2 2 gd idV (t+1)=w.V (t)+c .r .(p -X (t))+c .r .(p -X (t))

id id idX (t+1)=X (t)+V (t+1)                            
 
where Vid(t+1) and Vid (t)   are the updated and current 
particles velocities, respectively,  Xid ( t + 1) and  X
the updated and current particles positions, respectively, c
and c2 are two positive constants and r1 and r
unit random numbers within the range [0,l]), and 
inertia weight.  
 

Fig. 2 Flow chart depicting the General PSO Algorithm

IV.  OPTIMAL FLC DESIGN 

The approach of using a PSO for MF tuning in FLC is 
shown in Fig. 3. In the proposed PSO process, each particle is 
shaped to represent the MF parameters of the FLC’s inputs 
and outputs. As the aim of the PSO is to minimize the control 
error of the FLC, the objective function of PSO is defined as:

 

 

Process
yu

 
Block diagram for the FLC algorithm 

PTIMIZATION  
An optimization method that finds the optimal solution 

PSO algorithm. Each 
swarm of PSO is a solution in the solution space. The 

as follows [1]:  
has the following properties: A 

, a current velocity, pid, and 
id.  

, corresponds to the position 
presents the smallest error as 

determined by the objective function f, assuming a 

• The global best position marked by represents the position 
pgd.  

During the iteration every particle in the swarm is updated using the 

id id 1 1 id id 2 2 gd idV (t+1)=w.V (t)+c .r .(p -X (t))+c .r .(p -X (t))(2) 

                                       (3) 

(t)   are the updated and current 
( t + 1) and  Xid ( t)  are 

the updated and current particles positions, respectively, c1 
and r2 are normalized 

the range [0,l]), and w is the 

 
Flow chart depicting the General PSO Algorithm 

ESIGN  

The approach of using a PSO for MF tuning in FLC is 
3. In the proposed PSO process, each particle is 

shaped to represent the MF parameters of the FLC’s inputs 
and outputs. As the aim of the PSO is to minimize the control 
error of the FLC, the objective function of PSO is defined as: 

2

0

( ( ) )
ft

t

f x k ε
=

= ∑                  

 
Where tf is the total running time of the FLC, 

Control error.  
 

Fig. 3 The PSO

The model consists of multi
system with n number of inputs. The 
the inputs are m1 , m2 ,.., mn. 

There are some assumptions in the model formulation. 
These assumptions must be defined and available in advance 
as a basic integration of this hybrid algorithm. The 
assumptions are listed as below: 

(i) Gaussian membership functions were used for input and 
output variables. 

(ii) Complete rule-base was considered. A rule
considered complete when all possible combinations of input 
membership functions of all the input variables participate in 
fuzzy rule-base formation.  

The integration between optimization 
logic problem is as follow:  

(i) The parameters are the mean value and standard 
deviation of each  fuzzy membership function. 

(ii) These parameters act as particles and loo
global best fitness.  

(iii)  It starts with an initial set of parameters. 
(iv) After the parameters had been adjusted using 

optimization method, this parameter will be used to check the 
performance of the fuzzy logic. 

(v) This process is repeated until the goal is achieved. 
The optimization method as shown in 
initial set of parameters and employs the fitness function to 
obtain new values for the parameters of the membership 
function. These new values will be used in the case study 
considered in this paper. 

These particle dimensions represent fuzzy membership 
function parameter values. The first column shows the input 
and output variables. All input and output MFs become 
different depending on their new position. 
representing the Gaussian membership functions of input and 
output variables for a model is given by (5
Particles Dimension for Input Variables

1

(2 )
n

i
i

m
=
∑                                                                   

where, n - number of input variables and m 
sets.  
Particles Dimension for Output Variable

                                                  (4) 

is the total running time of the FLC, ε is the 

 
PSO-FLC method 

The model consists of multi-input single-output (MISO) 
system with n number of inputs. The number of fuzzy sets for 

 
There are some assumptions in the model formulation. 

These assumptions must be defined and available in advance 
as a basic integration of this hybrid algorithm. The 
assumptions are listed as below:  

(i) Gaussian membership functions were used for input and 

base was considered. A rule-base is 
considered complete when all possible combinations of input 
membership functions of all the input variables participate in 

The integration between optimization algorithm and fuzzy 

(i) The parameters are the mean value and standard 
deviation of each  fuzzy membership function.  

(ii) These parameters act as particles and looking  for the 

(iii)  It starts with an initial set of parameters.  
(iv) After the parameters had been adjusted using 

optimization method, this parameter will be used to check the 
performance of the fuzzy logic.  

(v) This process is repeated until the goal is achieved.  
The optimization method as shown in Fig. 4 starts with the 
initial set of parameters and employs the fitness function to 
obtain new values for the parameters of the membership 

lues will be used in the case study 

These particle dimensions represent fuzzy membership 
function parameter values. The first column shows the input 
and output variables. All input and output MFs become 
different depending on their new position. The particle size for 

n membership functions of input and 
is given by (5) and (6). 

Particles Dimension for Input Variables: 

                                                                        (5)                        

number of input variables and m - number of fuzzy 

Particles Dimension for Output Variable: 
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1

(2 )
n

i

t
=
∑                                                                     

where, n - number of output variables and 
sets.  The particle dimensions required for encoding the fuzzy 
model can be obtained in table 1. 

Fig. 4 Flowchart of Particle Swarm Optimization to a
Membership Function 

 
TABLE I 

 PARTICLE DIMENSION FOR REPRESENTING FUZZY MODEL

 c σ  c σ  … …
Input 
var #1 

X11 X11 X12 X12 
 

…

Input 
var #2 

X21 X21 X22 X22 … …

… … … … … … …
… … … … … … …

Input 
var #n 

Xn1 Xn1 Xn2 Xn2 … …

       
output 
variabl

e 
Y1 Y1 Y2 Y2 … …

 
These particle dimensions represent fuzzy membership 

function parameter values. The first column shows the input 
and output variables. In this column, number represents the 
input variable. Because MISO system was considered as 
model only one output variable is used here Because MIS
system was considered as model. 

First row describe mean value and standard deviation of 
each membership function. The number of membership 
function represent until m variables. In the last column, 2m 
can be noted which means that 2 positions had been use
unlimited until m variables. 

V.  PROCESS DESCRIPTION AND MODEL

To demonstrate the effectiveness of the proposed PSO
method, a nonlinear system is simulated. In particular, 
considered in this paper is a nonlinear CSTR benchmark 
model as shown in Fig. 5. 

 

                                                                            (6)                                                                                                                                

iables and t - number of fuzzy 
sets.  The particle dimensions required for encoding the fuzzy 

 
Flowchart of Particle Swarm Optimization to adjust Fuzzy 

 

DIMENSION FOR REPRESENTING FUZZY MODEL 

… c σ  
 

… X1m X1m 2m1 

… X2m X2m 2m2 

… … … … 
… … … … 

… Xnm Xnm 2mn 

   

… Yt Yt 2t 

represent fuzzy membership 
function parameter values. The first column shows the input 

In this column, number represents the 
input variable. Because MISO system was considered as 
model only one output variable is used here Because MISO 

First row describe mean value and standard deviation of 
each membership function. The number of membership 

variables. In the last column, 2m 
can be noted which means that 2 positions had been used and 

AND MODEL 

To demonstrate the effectiveness of the proposed PSO-FLC 
method, a nonlinear system is simulated. In particular, the case 

linear CSTR benchmark 

Fig. 5 The schematic of CSTR[10]

A common chemical system in many chemical processing 
plants, known as a continuous stirred tank reactor (CSTR), is 
utilized as a suitable test for PSO
CSTR two chemicals are mixed, and react to produce a 
product compound with conc
of the mixture is T(t). A schematic representation of the 
system is shown in Fig. 1. The reaction is exothermic, 
producing heat reduce the reaction rate. By introducing a 
coolant flow rate qc(t), the temperature can be alte
hence the product concentration controlled. This system can 
be described by following nonlinear simultaneous equations 
which effectively combine the laws of chemical reaction and 
thermodynamic: 

 
0 0( ) ( ( )) / ( )a a a aC t q C C t V k C t e= − −

0 1 2( ) ( ( )) / ( ) ( ).T t q T T t V k C t e k qC t= − + +

              3 / ( )
0.(1 )( ( ))k qc t

ce T T t− −

TABLE 
 THE CSTR PARAMETERS

parameter 

Process flow rate, q (l min )
Feed Concentration, 

0C (mol l )a

Feed temperature, 
0( )T K

Inlet coolant temperature, 

CSTR volume, V (l) 

Heat transfer term, (cal min K )hA

Reaction rate constant, 
0k

Activation energy term, E

R
Heat of reaction,  (cal mol )H∆
Liquid densities, ,  (gl )cρ ρ
Specific heats, ,  (cal g K )p pcC C

VI.  SIMULATION 

To solve the CSTR model equations numerically an 
equation based simulator should be used, in this article the 
MATLAB simulink environment is carried out. 

                                                                                                                             

 
The schematic of CSTR[10] 

A common chemical system in many chemical processing 
plants, known as a continuous stirred tank reactor (CSTR), is 
utilized as a suitable test for PSO-Fuzzy control. within the 
CSTR two chemicals are mixed, and react to produce a 
product compound with concentration Ca(t). The temperature 

. A schematic representation of the 
1. The reaction is exothermic, 

producing heat reduce the reaction rate. By introducing a 
coolant flow rate qc(t), the temperature can be altered and 
hence the product concentration controlled. This system can 
be described by following nonlinear simultaneous equations 
which effectively combine the laws of chemical reaction and 

/ ( )
0 0( ) ( ( )) / ( ) E RT t

a a a aC t q C C t V k C t e= − −                 (7) 

/ ( )
0 1 2( ) ( ( )) / ( ) ( ).E RT t

aT t q T T t V k C t e k qC t= − + +  

0.(1 )( ( ))ce T T t− −                                    (8) 

TABLE II 
THE CSTR PARAMETERS 

value 

1(l min )−  100 
1

0C (mol l )−  1 

( )  350 

Inlet coolant temperature, 
0( )cT K  350 

100 
1 1(cal min K )− −  57 10×  

1
0(min )k −  107.2 10×  

 (K)
E

R
 410  

1 (cal mol )−  52 10− ×  
1,  (gl )−  310  

1 1,  (cal g K )− −  1 

IMULATION AND RESULTS 

To solve the CSTR model equations numerically an 
based simulator should be used, in this article the 

imulink environment is carried out.  
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Fig. 6shows the feedback control system used to construct 
the control system. In this diagram y (k) is the output signal of 
the plant, g(k)  is the set point signal, and e(k) is the error. It 
was implemented in MATLAB where controllers were 
designed independently to follow the input as close as 
possible. 

 

Fig. 6 Block diagram of the fuzzy control systems

As it shown in Fig. 5, uncertainty is added to the system’s 
output as random noise with normal distribution. The 
reference input is stable and without noise but the feedback at 
the summing junction is noisy since we introduced 
deliberately noise for simulating the overall ex
uncertainty in the system. In consequence, the controller’s 
inputs e(k) (error) contain uncertain data. 

The FLC outputs are equal to required temperature changes 
of coolant operator valve to achieve desired concentration
control the process, two Fuzzy controllers (Conventional FLC, 
PSO tuned FLC) is used and the results are compared. 

Gaussian shapes are considered for the membership 
functions. For such functions seven input and output are used 
with the locations and centers that are shown in 
Gaussian shape is selected because it is a continuous function 
and can be easily coded in a digital computer. The number of 
fuzzy sets is chosen arbitrary, however increasing them will 
increase the number of control rules at the little improvem
benefit. The relative location of their center will be adjusted 
automatically using our proposed tuning method as discussed 
later. 

A. Conventional FLC   

The initial MFs of the FLC for the inputs and outputs are 
shown in Fig. 6 and 7, seven fuzzy Gaussian
NB, NM, NS, ZE, PS, PM, and PB. The universe of discourse
for these MFs are in the range of [-1, 1] and their initial means 
are -1, -0.66, -0.33, 0, 0.33, 0.66 and 1 respectively. The initial 
standard deviation for all MFs is 0.14. Seven f
been considered to construct the fuzzy rule base and are taken 
follows. Fuzzy controllers have been designed and tested, 
based on Mamdani inference mechanism. 

 

shows the feedback control system used to construct 
the control system. In this diagram y (k) is the output signal of 
the plant, g(k)  is the set point signal, and e(k) is the error. It 

where controllers were 
designed independently to follow the input as close as 

 
Block diagram of the fuzzy control systems 

5, uncertainty is added to the system’s 
output as random noise with normal distribution. The 
reference input is stable and without noise but the feedback at 
the summing junction is noisy since we introduced 
deliberately noise for simulating the overall existing 
uncertainty in the system. In consequence, the controller’s 

 
The FLC outputs are equal to required temperature changes 

of coolant operator valve to achieve desired concentration. To 
Fuzzy controllers (Conventional FLC, 

PSO tuned FLC) is used and the results are compared.   
Gaussian shapes are considered for the membership 

functions. For such functions seven input and output are used 
with the locations and centers that are shown in Fig. 7 and 8. 
Gaussian shape is selected because it is a continuous function 
and can be easily coded in a digital computer. The number of 
fuzzy sets is chosen arbitrary, however increasing them will 
increase the number of control rules at the little improvement 
benefit. The relative location of their center will be adjusted 
automatically using our proposed tuning method as discussed 

The initial MFs of the FLC for the inputs and outputs are 
6 and 7, seven fuzzy Gaussian MFs are defined: 

, ZE, PS, PM, and PB. The universe of discourse 
1, 1] and their initial means 

0.33, 0, 0.33, 0.66 and 1 respectively. The initial 
standard deviation for all MFs is 0.14. Seven fuzzy rules have 
been considered to construct the fuzzy rule base and are taken 

Fuzzy controllers have been designed and tested, 
 

Fig. 7 input MFs for conventional FLC

Fig. 8 output MFs for conventional FLC

Fig. 8 represents the schematic of the CSTR simulated 
model implemented in the MATLAB Simulink environment. 

Seven fuzzy rules have been considered to construct the fuzzy 
rule base. These rules are as follows:
1. If (e is NB) then (valve is PB)
2. If (e is NM) then (valve is PM)
3. If (e is NS) then (valve is PS)
4. If (e is ZE) then (valve is ZE)
5. If (e is PS) then (valve is NS)
6. If (e is PM) then (valve is NM)
7. If (e is PB) then (valve is NB)

For the FLC, the minimum operator is used as the t
and centroid method for defuzzification.

To evaluate the merit of each fuzzy controller, Sum of the 
Square Error (SSE) that is given by equation (
performance criteria. 

( ) 2

1

N

j

F e j
=

 =  ∑                                      

where e the difference between the set point and the actual is 
output at the jth sampling, and, N
instants. 

Fig. 9 CSTR simulated model in Simulink with PSO

 
input MFs for conventional FLC 

 
output MFs for conventional FLC 

Fig. 8 represents the schematic of the CSTR simulated 
model implemented in the MATLAB Simulink environment.  

Seven fuzzy rules have been considered to construct the fuzzy 
rule base. These rules are as follows: 

If (e is NB) then (valve is PB) 
hen (valve is PM) 

If (e is NS) then (valve is PS) 
If (e is ZE) then (valve is ZE) 
If (e is PS) then (valve is NS) 
If (e is PM) then (valve is NM) 
If (e is PB) then (valve is NB) 

For the FLC, the minimum operator is used as the t�norm, 
or defuzzification. 

To evaluate the merit of each fuzzy controller, Sum of the 
Square Error (SSE) that is given by equation (9) is used as 

                                                (9) 

the difference between the set point and the actual is 
sampling, and, N is the number of sampling 

 
CSTR simulated model in Simulink with PSO- FLC 
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B. PSO tuned FLC    

All of The MFs used in this FLC are Gaussian forms. The 
parameters that define the MFs are the mean value c and the 
standard deviation σ  of each MF. The membership function 
is defined as: 

2 2( ) (2 )( ) x c
mff x e σ− −=                                             (10) 

Fig. 10 and 11, show the optimized MFs of FLC 
respectively. This criterion is used by PSO to evaluate the 
fitness of each candidate solution. This criterion is used by 
PSO to evaluate the fitness of each candidate solution. Since 
there are 7 input MFs and 7 output MFs, there are a total of 28 
parameters that need to be tuned. Therefore, in the PSO, each 
particle is to have 28 dimensions. It is set that there are 50 
particles in the swarm and the total searching iterations are set 
to be 200. The inertia w factor was set to be 0.5 and weighting 
factors c1 and c2 were set to be 1.2and 0.8, respectively (see 
Table III). The objective function that evaluates the fitness of 
each particle was defined as (9). Therefore, after the proper 
tuning of the MFs, the FLC will have a minimized control 
error. Table IV shows the MF parameters before and after the 
PSO tuning process. 

 
Fig. 10 Optimized input MFs for PSO- FLC 

 
Fig. 11 Optimized output MFs for PSO- FLC 

TABLE III 
PSO PARAMETERS FOR CSTH PROBLEM 

Parameter Value 
C1 1.2 
C2 0.8 

Inertia w factor 0.5 
Number of particle 50 
Searching iterations 200 

Fitness SSE 
 
 
 
 

 
 

TABLE III 
 MF PARAMETERS BEFORE AND AFTER THE PSO 

MF 
output 

Before PSO 
Mean(c)    STD(ϭ ) 

After PSO 
Mean(c)    STD(ϭ ) 

NB 
NM 
NS 
ZE 
PS 
PM 
PB 

       -1                 0.14 
-0.66          0.14 
-0.33          0.14 
 0                0.14 
0.33           0.14 
0.66           0.14 
1                0.14 

-1.03              0.14 
   -0.58                  0.1 

-0.33              0.18 
-0                   0.06 
0.33               0.17 
0.59               0.09 
0.94               0.14 

MF 
output 

Before PSO 
Mean(c)    STD(ϭ) 

After PSO 
Mean(c)    STD(ϭ ) 

NB 
NM 
NS 
ZE 
PS 
PM 
PB 

-1                 0.14 
-0.66           0.14 
-0.33           0.14 
0                 0.14 
0.33            0.14 
0.66            0.14 
1                0.14 

-1.03              0.14 
   -0.58                  0.1 

-0.33              0.18 
-0                   0.06 
0.33               0.17 
0.59               0.09 
0.94               0.14 

TABLE IV 
SSE  FOR THE FLC AND PSO- FLC 

Control Structure SSE 

conventional FLC 27.23 

tuned FLC(PSO-FLC) 22.68 

      
Fig. 13 Step response for FLC 

 
Fig. 14 Step response for PSO-FLC 

Comparison between the control results obtained from FLC 
and PSO-FLC (in Fig. 13 and 14 respectively) clearly shows 
that PSO-FLC has more accurate and acceptable results rather 
than conventional FLC in control of the concentration of a 
CSTR in presence of additive random noise. Therefore, it is 
clear that the PSO-FLC control can achieve the desired output 
better than conventional FLC.The superior of PSO-FLC over 
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than FLC also can be seen in Table V where the sum of square 
error (SSE) of PSO-FLC is less than conventional FLC. 

VII.  CONCLUSION 

The results show clearly, that the optimized FLC has better 
performance in compare with a conventional controller in 
presence of additive random noise. The concentration of a 
CSTR is controlled by means of two different fuzzy 
controllers. According to the results of the computer 
simulation, the FLC with PSO algorithm is better than the 
conventional FLC without PSO algorithm.  The major 
disadvantage of the fuzzy controller is lacking analytical 
technique design (the selection of the rules, the membership 
functions and the scaling factors). Therefore the PSO-FLC 
controller gives robustness improvement and very good results 
in compare with the conventional FLC controller. 
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