Search results for: BELBIC
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: BELBIC

3 Optimal Controller with Backstepping and BELBIC for Single-Link Flexible Manipulator

Authors: Ali Reza Sahab, Amir Gholami Pastaki

Abstract:

In this paper, backstepping method (BM) is proposed for a single-link flexible mechanical manipulator. In each step of this method a positive value is obtained. Selections of the gain factor values are very important because controller will have different behavior for each different set of values. Improper selection of these gains can lead to instability of the system. In order to choose proper values for gains BELBIC method has been used in this work. Finally, to prove the efficiency of this method, the obtained results of proposed model are compared with robust controller one. Results show that the combination of backstepping and BELBIC that is presented here, can stabilized the system with higher speed, shorter settling time and lower overshoot in than robust controller.

Keywords: single-link flexible manipulator, backstepping, BELBIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
2 Designing a Football Team of Robots from Beginning to End

Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi

Abstract:

The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.

Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1 Using Emotional Learning in Rescue Simulation Environment

Authors: Maziar Ahmad Sharbafi, Caro Lucas, Abolfazel Toroghi Haghighat, Omid AmirGhiasvand, Omid Aghazade

Abstract:

RoboCup Rescue simulation as a large-scale Multi agent system (MAS) is one of the challenging environments for keeping coordination between agents to achieve the objectives despite sensing and communication limitations. The dynamicity of the environment and intensive dependency between actions of different kinds of agents make the problem more complex. This point encouraged us to use learning-based methods to adapt our decision making to different situations. Our approach is utilizing reinforcement leaning. Using learning in rescue simulation is one of the current ways which has been the subject of several researches in recent years. In this paper we present an innovative learning method implemented for Police Force (PF) Agent. This method can cope with the main difficulties that exist in other learning approaches. Different methods used in the literature have been examined. Their drawbacks and possible improvements have led us to the method proposed in this paper which is fast and accurate. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is our solution for learning in this environment. BELBIC is a physiologically motivated approach based on a computational model of amygdale and limbic system. The paper presents the results obtained by the proposed approach, showing the power of BELBIC as a decision making tool in complex and dynamic situation.

Keywords: Emotional learning, rescue, simulation environment, RoboCup, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622