Search results for: Thermal performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6802

Search results for: Thermal performance

3892 Effect of Plasma Therapy on Epidermal Regeneration

Authors: Magda Bădescu, Daniela Jitaru, C.Grigoraş, L.Bădescu, I. Topala, Manuela Ciocoiu

Abstract:

The purpose of our study was to compare spontaneous re-epithelisation characteristics versus assisted re-epithelisation. In order to assess re-epithelisation of the injured skin, we have imagined and designed a burn wound model on Wistar rat skin. Our aim was to create standardised, easy reproducible and quantifiable skin lesions involving entire epidermis and superficial dermis. We then have applied the above mentioned therapeutic strategies to compare regeneration of epidermis and dermis, local and systemic parameter changes in different conditions. We have enhanced the reepithelisation process under a moist atmosphere of a polyurethane wound dress modified with helium non-thermal plasma, and with the aid of direct cold-plasma treatment respectively. We have followed systemic parameters change: hematologic and biochemical parameters, and local features: oxidative stress markers and histology of skin in the above mentioned conditions. Re-epithelisation is just a part of the skin regeneration process, which recruits cellular components, with the aid of epidermal and dermal interaction via signal molecules.

Keywords: Plasma medicine, re-epithelisation and tissue regeneration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
3891 An Experimental Study on Intellectual Concentration Influenced by Indoor Airflow

Authors: Kyoko Ito, Shinya Furuta, Daisuke Kamihigashi, Kimi Ueda, Hirotake Ishii, Hiroshi Shimoda, Fumiaki Obayashi, Kazuhiro Taniguchi

Abstract:

In order to improve intellectual concentration, few studies have verified the effect of indoor airflow among the thermal environment conditions, and the differences of the season in effects have not been studied. In this study, in order to investigate the influence of the airflow in winter on the intellectual concentration, an evaluation experiment was conducted. In the previous study, an effective airflow in summer was proposed and the improvement of intellectual concentration by evaluation experiment was confirmed. Therefore, an airflow profile in winter was proposed with reference to the airflow profile in summer. The airflows are a combination of a simulative airflow and mild airflow. An experiment has been conducted to investigate the influence of a room airflow in winter on intellectual concentration. As a result of comparison with no airflow condition, no significant difference was found. Based on the results, it is a future task to ask preliminary preference in advance and to establish a mechanism that can provide controllable airflow for each individual, taking into account the preference for airflow to be different for each individual.

Keywords: Intellectual concentration, airflow, winter, experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
3890 A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks

Authors: Abdallah Al Sabbagh

Abstract:

Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.

Keywords: Heterogeneous Wireless Network, Markov chain model, load-balancing based and service based algorithm, CRRM algorithms, Beyond 3G network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
3889 Parallel-computing Approach for FFT Implementation on Digital Signal Processor (DSP)

Authors: Yi-Pin Hsu, Shin-Yu Lin

Abstract:

An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.

Keywords: Parallel-computing, FFT, low-memory reference, TIDSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
3888 Sustainable Balanced Scorecard for Kaizen Evaluation: Comparative Study between Egypt and Japan

Authors: Ola I. S. El Dardery, Ismail Gomaa, Adel R. M. Rayan, Ghada El Khayat, Sara H. Sabry

Abstract:

Continuous improvement activities are becoming a key organizational success factor; those improvement activities include but are not limited to kaizen, six sigma, lean production, and continuous improvement projects. Kaizen is a Japanese philosophy of continuous improvement by making small incremental changes to improve an organization’s performance, reduce costs, reduce delay time, reduce waste in production, etc. This research aims at proposing a measuring system for kaizen activities from a sustainable balanced scorecard perspective. A survey was developed and disseminated among kaizen experts in both Egypt and Japan with the purpose of allocating key performance indicators for both kaizen process (critical success factors) and result (kaizen benefits) into the five sustainable balanced scorecard perspectives. This research contributes to the extant literature by presenting a kaizen measurement of both kaizen process and results that will illuminate the benefits of using kaizen. Also, the presented measurement can help in the sustainability of kaizen implementation across various sectors and industries. Thus, grasping the full benefits of kaizen implementation will contribute to the spread of kaizen understanding and practice. Also, this research provides insights on the social and cultural differences that would influence the kaizen success. Determining the combination of the proper kaizen measures could be used by any industry, whether service or manufacturing for better kaizen activities measurement. The comparison between Japanese implementation of kaizen, as the pioneers of continuous improvement, and Egyptian implementation will help recommending better practices of kaizen in Egypt and contributing to the 2030 sustainable development goals. The study results reveal that there is no significant difference in allocating kaizen benefits between Egypt and Japan. However, with regard to the critical success factors some differences appeared reflecting the social differences and understanding between both countries, a single integrated measurement was reached between the Egyptian and Japanese allocation highlighting the Japanese experts’ opinion as the ultimate criterion for selection.

Keywords: continuous improvements, kaizen, performance, sustainable balanced scorecard

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
3887 Effect of Helium-Argon Mixtures on the Heat Transfer and Fluid Flow in Gas Tungsten Arc Welding

Authors: A. Traidia, F. Roger, A. Chidley, J. Schroeder, T. Marlaud

Abstract:

A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.

Keywords: GTAW, Thermal plasmas, Fluid flow, Marangoni effect, Shielding Gases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263
3886 A Simulation Method to Find the Optimal Design of Photovoltaic Home System in Malaysia, Case Study: A Building Integrated Photovoltaic in Putra Jaya

Authors: Riza Muhida, Maisarah Ali, Puteri Shireen Jahn Kassim, Muhammad Abu Eusuf, Agus G.E. Sutjipto, Afzeri

Abstract:

Over recent years, the number of building integrated photovoltaic (BIPV) installations for home systems have been increasing in Malaysia. The paper concerns an analysis - as part of current Research and Development (R&D) efforts - to integrate photovoltaics as an architectural feature of a detached house in the new satellite township of Putrajaya, Malaysia. The analysis was undertaken using calculation and simulation tools to optimize performance of BIPV home system. In this study, a the simulation analysis was undertaken for selected bungalow units based on a long term recorded weather data for city of Kuala Lumpur. The simulation and calculation was done with consideration of a PV panels' tilt and direction, shading effect and economical considerations. A simulation of the performance of a grid connected BIPV house in Kuala Lumpur was undertaken. This case study uses a 60 PV modules with power output of 2.7 kW giving an average of PV electricity output is 255 kWh/month..

Keywords: Building integrated photovoltaic, Malaysia, Simulation, panels' tilt and direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
3885 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers

Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear

Abstract:

High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.

Keywords: Current density, High-speed VCSELs, Modulation bandwidth, Small-Signal Characteristics, Thermal impedance, Vertical-cavity surface-emitting lasers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
3884 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood

Abstract:

This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: VCSELs, optical power generation, power consumption, square wave modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
3883 Synthesis, Characterization and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites

Authors: Rashmi S. H., G. M. Madhu, A. A. Kittur, R. Suresh

Abstract:

Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro sized particles used as reinforcing agents scatter light, thus reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesising zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.

Keywords: Glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3046
3882 Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration

Authors: Diqiao S. Wei, M. Hossain, Zaid S. Saleh

Abstract:

Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.

Keywords: Fouling, membrane, polyphenols, ultrafiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3395
3881 Optimized and Secured Digital Watermarking Using Entropy, Chaotic Grid Map and Its Performance Analysis

Authors: R. Rama Kishore, Sunesh

Abstract:

This paper presents an optimized, robust, and secured watermarking technique. The methodology used in this work is the combination of entropy and chaotic grid map. The proposed methodology incorporates Discrete Cosine Transform (DCT) on the host image. To improve the imperceptibility of the method, the host image DCT blocks, where the watermark is to be embedded, are further optimized by considering the entropy of the blocks. Chaotic grid is used as a key to reorder the DCT blocks so that it will further increase security while selecting the watermark embedding locations and its sequence. Without a key, one cannot reveal the exact watermark from the watermarked image. The proposed method is implemented on four different images. It is concluded that the proposed method is giving better results in terms of imperceptibility measured through PSNR and found to be above 50. In order to prove the effectiveness of the method, the performance analysis is done after implementing different attacks on the watermarked images. It is found that the methodology is very strong against JPEG compression attack even with the quality parameter up to 15. The experimental results are confirming that the combination of entropy and chaotic grid map method is strong and secured to different image processing attacks.

Keywords: Digital watermarking, discrete cosine transform, chaotic grid map, entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
3880 Investigating Daylight Quality in Malaysian Government Office Buildings Through Daylight Factor and Surface Luminance

Authors: Mohd Zin Kandar, Mohd Sabere Sulaiman, Yong Razidah Rashid, Dilshan Remaz Ossen, Aminatuzuhariah MAbdullah, Lim Yaik Wah, Mansour Nikpour

Abstract:

In recent years, there has been an increasing interest in using daylight to save energy in buildings. In tropical regions, daylighting is always an energy saver. On the other hand, daylight provides visual comfort. According to standards, it shows that many criteria should be taken into consideration in order to have daylight utilization and visual comfort. The current standard in Malaysia, MS 1525 does not provide sufficient guideline. Hence, more research is needed on daylight performance. If architects do not consider daylight design, it not only causes inconvenience in working spaces but also causes more energy consumption as well as environmental pollution. This research had surveyed daylight performance in 5 selected office buildings from different area of Malaysian through experimental method. Several parameters of daylight quality such as daylight factor, surface luminance and surface luminance ratio were measured in different rooms in each building. The result of this research demonstrated that most of the buildings were not designed for daylight utilization. Therefore, it is very important that architects follow the daylight design recommendation to reduce consumption of electric power for artificial lighting while the sufficient quality of daylight is available.

Keywords: Daylight factor, Field measurement, Daylighting quality, Tropical

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3494
3879 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency

Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai

Abstract:

Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.

Keywords: Anila stove, biochar, soil conditioning materials, temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
3878 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks

Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan

Abstract:

In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.

Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
3877 Exploratory Data Analysis of Passenger Movement on Delhi Urban Bus Route

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System is an integrated application of communication, control and monitoring and display process technologies for developing a user–friendly transportation system for urban areas in developing countries. In fact, the development of a country and the progress of its transportation system are complementary to each other. Urban traffic has been growing vigorously due to population growth as well as escalation of vehicle ownership causing congestion, delays, pollution, accidents, high-energy consumption and low productivity of resources. The development and management of urban transport in developing countries like India however, is at tryout stage with very few accumulations. Under the umbrella of ITS, urban corridor management strategy have proven to be one of the most successful system in accomplishing these objectives. The present study interprets and figures out the performance of the 27.4 km long Urban Bus route having six intersections, five flyovers and 29 bus stops that covers significant area of the city by causality analysis. Performance interpretations incorporate Passenger Boarding and Alighting, Dwell time, Distance between Bus Stops and Total trip time taken by bus on selected urban route.

Keywords: Congestion, Dwell time, delay, passengers boarding alighting, travel time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
3876 Laser Surface Hardening Considering Coupled Thermoelasticity using an Eulerian Formulations

Authors: Me. Sistaninia, G.H.Farrahi, Ma. Sistaninia

Abstract:

Thermoelastic temperature, displacement, and stress in heat transfer during laser surface hardening are solved in Eulerian formulation. In Eulerian formulations the heat flux is fixed in space and the workpiece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulations leads to a steady-state problem, while the Lagrangian formulations remains transient. In Eulerian formulations the reduction to a steady-state problem increases the computational efficiency. In this study also an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal result of the numerical model is compared with the result of this analytical model. Comparing the results shows numerical solution for uncoupled equations are in good agreement with the analytical solution.

Keywords: Coupled thermoelasticity, Finite element, Laser surface hardening, Eulerian formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
3875 Prediction of Slump in Concrete using Artificial Neural Networks

Authors: V. Agrawal, A. Sharma

Abstract:

High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networks (NN) to predict the slump in High Strength Concrete (HSC). Neural Network models is constructed, trained and tested using the available test data of 349 different concrete mix designs of High Strength Concrete (HSC) gathered from a particular Ready Mix Concrete (RMC) batching plant. The most versatile Neural Network model is selected to predict the slump in concrete. The data used in the Neural Network models are arranged in a format of eight input parameters that cover the Cement, Fly Ash, Sand, Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, Super-Plasticizer and Water/Binder ratio. Furthermore, to test the accuracy for predicting slump in concrete, the final selected model is further used to test the data of 40 different concrete mix designs of High Strength Concrete (HSC) taken from the other batching plant. The results are compared on the basis of error function (or performance function).

Keywords: Artificial Neural Networks, Concrete, prediction ofslump, slump in concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603
3874 Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods

Authors: Eu Tteum Ha, Kwang Ryel Ryu

Abstract:

As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces when using smartphone sensors for activity recognition is that the number of sensors should be minimized to save battery power. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we adopt to deal with this twelve-class problem uses various methods. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point, but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window. The experiments compared the performance of four kinds of basic multi-class classifiers and the performance of four kinds of ensemble learning methods based on three kinds of basic multi-class classifiers. The results show that while the method with the highest accuracy is ECOC based on Random forest.

Keywords: Ensemble learning, activity recognition, smartphone accelerometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
3873 Design a Fractional Order Controller for Power Control of Doubly Fed Induction Generator Based Wind Generation System

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

During the recent years, much interest has been devoted to fractional order control that has appeared as a very eligible control approach for the systems experiencing parametric uncertainty and outer disturbances. The main purpose of this paper is to design and evaluate the performance of a fractional order proportional integral (FOPI) controller applied to control prototype variable speed wind generation system (WGS) that uses a doubly fed induction generator (DFIG). In this paper, the DFIG-machine is controlled according to the stator field-oriented control (FOC) strategy, which makes it possible to regulate separately the reactive and active powers exchanged between the WGS and the grid. The considered system is modeled and simulated using MATLAB-Simulink, and the performance of FOPI controller applied to the back-to-back power converter control of DFIG based grid connected variable speed wind turbine are evaluated and compared to the ones obtained with a conventional PI controller.

Keywords: Design, fractional order PI controller, wind generation system, doubly fed induction generator, wind turbine, field-oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
3872 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell

Authors: Nawang Chhunid, Gagnesh Kumar

Abstract:

On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.

Keywords: DRAM cell, read access time, tanner EDA tool write access time and retention time, average power dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
3871 Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process

Authors: Amin Esmaeilzadeh, Mohammad Sadeghi, Farhad Kolahan

Abstract:

Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.

Keywords: Welding, thin plate, buckling distortion, fixture locators, finite element modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
3870 Influence of Environmental Temperature on Dairy Herd Performance and Behaviour

Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, S. Harapanahalli, J. Walsh

Abstract:

The objective of this study was to determine the effects of environmental stressors on the performance of lactating dairy cows and discuss some future trends. There exists a relationship between the meteorological data and milk yield prediction accuracy in pasture-based dairy systems. New precision technologies are available and are being developed to improve the sustainability of the dairy industry. Some of these technologies focus on welfare of individual animals on dairy farms. These technologies allow the automatic identification of animal behaviour and health events, greatly increasing overall herd health and yield while reducing animal health inspection demands and long-term animal healthcare costs. The data set consisted of records from 489 dairy cows at two dairy farms and temperature measured from the nearest meteorological weather station in 2018. The effects of temperature on milk production and behaviour of animals were analyzed. The statistical results indicate different effects of temperature on milk yield and behaviour. The “comfort zone” for animals is in the range 10 °C to 20 °C. Dairy cows out of this zone had to decrease or increase their metabolic heat production, and it affected their milk production and behaviour.

Keywords: Behaviour, milk yield, temperature, precision technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
3869 Numerical Study of Vertical Wall Jets: Influence of the Prandtl Number

Authors: Amèni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot

Abstract:

This paper is a numerical investigation of a laminar isothermal plane two dimensional wall jet. Special attention has been paid to the effect of the inlet conditions at the nozzle exit on the hydrodynamic and thermal characteristics of the flow. The behaviour of various fluids evolving in both forced and mixed convection regimes near a vertical plate plane is carried out. The system of governing equations is solved with an implicit finite difference scheme. For numerical stability we use a staggered non uniform grid. The obtained results show that the effect of the Prandtl number is significant in the plume region in which the jet flow is governed by buoyant forces. Further for ascending X values, the buoyancy forces become dominating, and a certain agreement between the temperature profiles are observed, which shows that the velocity profile has no longer influence on the wall temperature evolution in this region. Fluids with low Prandtl number warm up more importantly, because for such fluids the effect of heat diffusion is higher.

Keywords: Forced convection, Mixed convection, Prandtl number, Wall jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
3868 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-LiClO4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan

Abstract:

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via prepolymerization method with different NCO/OH ratios and labelled them as PU1, PU2, PU3 and PU4. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1. Differential scanning calorimetry (DSC) analysis indicates PU1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity and the lowest activation energy, Ea. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.

Keywords: Ionic conductivity, Palm kernel oil-based monoester polyol, polyurethane, solid polymer electrolyte.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154
3867 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham

Abstract:

Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.

Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
3866 Simulation of Natural Convection in Concentric Annuli between an Outer Inclined Square Enclosure and an Inner Horizontal Cylinder

Authors: Sattar Al-Jabair, Laith J. Habeeb

Abstract:

In this work, the natural convection in a concentric annulus between a cold outer inclined square enclosure and heated inner circular cylinder is simulated for two-dimensional steady state. The Boussinesq approximation was applied to model the buoyancy-driven effect and the governing equations were solved using the time marching approach staggered by body fitted coordinates. The coordinate transformation from the physical domain to the computational domain is set up by an analytical expression. Numerical results for Rayleigh numbers 103 , 104 , 105 and 106, aspect ratios 1.5 , 3.0 and 4.5 for seven different inclination angles for the outer square enclosure 0o , -30o , -45o , -60o , -90o , -135o , -180o are presented as well. The computed flow and temperature fields were demonstrated in the form of streamlines, isotherms and Nusselt numbers variation. It is found that both the aspect ratio and the Rayleigh number are critical to the patterns of flow and thermal fields. At all Rayleigh numbers angle of inclination has nominal effect on heat transfer.

Keywords: natural convection, concentric annulus, square inclined enclosure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
3865 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation

Authors: Dongsu Wu, Hongbin Gu, Peng Li

Abstract:

A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.

Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
3864 Thermal Stability Boundary of FG Panel under Aerodynamic Load

Authors: Sang-Lae Lee, Ji-Hwan Kim

Abstract:

In this study, it is investigated the stability boundary of Functionally Graded (FG) panel under the heats and supersonic airflows. Material properties are assumed to be temperature dependent, and a simple power law distribution is taken. First-order shear deformation theory (FSDT) of plate is applied to model the panel, and the von-Karman strain- displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Further, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel and Rayleigh damping coefficient is used to present the structural damping. In order to find a critical value of the speed, linear flutter analysis of FG panels is performed. Numerical results are compared with the previous works, and present results for the temperature dependent material are discussed in detail for stability boundary of the panel with various volume fractions, and aerodynamic pressures.

Keywords: Functionally graded panels, Linear flutter analysis, Supersonic airflows, Temperature dependent material property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
3863 Detection of Near Failure Winding due to Deformation in 33/11kV Power Transformer by using Low Voltage Impulse (LVI) Test Method and Validated through Untanking

Authors: R. Samsudin, Yogendra, Hairil Satar, Y.Zaidey

Abstract:

Power transformer consists of components which are under consistent thermal and electrical stresses. The major component which degrades under these stresses is the paper insulation of the power transformer. At site, lightning impulses and cable faults may cause the winding deformation. In addition, the winding may deform due to impact during transportation. A deformed winding will excite more stress to its insulating paper thus will degrade it. Insulation degradation will shorten the life-span of the transformer. Currently there are two methods of detecting the winding deformation which are Sweep Frequency Response Analysis (SFRA) and Low Voltage Impulse Test (LVI). The latter injects current pulses to the winding and capture the admittance plot. In this paper, a transformer which experienced overheating and arcing was identified, and both SFRA and LVI were performed. Next, the transformer was brought to the factory for untanking. The untanking results revealed that the LVI is more accurate than the SFRA method for this case study.

Keywords: Winding Deformation, Arcing, Dissolved GasAnalysis, Sweep Frequency Response Analysis, Low VoltageImpulse Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853