Search results for: carbon steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1503

Search results for: carbon steel

1263 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate

Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari

Abstract:

Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.

Keywords: Ductile moment frame, delayed wire rope bracing, cyclic loading, hysteresis curve, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
1262 Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma

Authors: M. Vesali Naseh, A. A. Khodadadi, Y. Mortazavi, O. Alizadeh Sahraei, F. Pourfayaz, S. Mosadegh Sedghi

Abstract:

In this study, multiwall carbon nanotubes (MWNTs) were modified with nitric acid chemically and by dielectric barrier discharge (DBD) plasma in an oxygen-based atmosphere. Used carbon nanotubes (CNTs) were prepared by chemical vapour deposition (CVD) floating catalyst method. For removing amorphous carbon and metal catalyst, MWNTs were exposed to dry air and washed with hydrochloric acid. Heating purified CNTs under helium atmosphere caused elimination of acidic functional groups. Fourier transformed infrared spectroscopy (FTIR) shows formation of oxygen containing groups such as C=O and COOH. Brunauer, Emmett, Teller (BET) analysis revealed that functionalization causes generation of defects on the sidewalls and opening of the ends of CNTs. Results of temperature-programmed desorption (TPD) and gas chromatography(GC) indicate that nitric acid treatment create more acidic groups than plasma treatment.

Keywords: Carbon nanotubes (CNTs), chemical treatment, functionalization, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5774
1261 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber

Authors: Mohamed H. Gabr, Kiyoshi Uzawa

Abstract:

The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.

Keywords: Sub-micro-filler, nano-composites, interfacial shear strength, polyamide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
1260 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

Authors: S. Alih, A. Khelil

Abstract:

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4296
1259 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber

Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He

Abstract:

As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.

Keywords: 3D printed, carbon fiber, fiber content, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
1258 Fuzzy Expert System Design for Determining Wearing Properties of Nitrided and Non Nitrided Steel

Authors: Serafettin Ekinci, Kursat Zuhtuogullari

Abstract:

This paper proposes a Fuzzy Expert System design to determine the wearing properties of nitrided and non nitrided steel. The proposed Fuzzy Expert System approach helps the user and the manufacturer to forecast the wearing properties of nitrided and non nitrided steel under specified laboratory conditions. Surfaces of the engineering components are often nitrided for improving wear, corosion, fatigue specifications. A major property of nitriding process is reducing distortion and wearing of the metalic alloys. A Fuzzy Expert System was developed for determining the wearing and durability properties of nitrided and non nitrided steels that were tested under different loads and different sliding speeds in the laboratory conditions.

Keywords: Fuzzy Expert System Design, Rule Based Systems, Fatigue, Corrosion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
1257 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: Composite, columns, experimental, finite element, fully encased, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858
1256 Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

Authors: Khaled S. Ragab

Abstract:

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete slabs in the post elastic range or the ultimate strength of a flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC). In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed then a parametric study of the effect ratio of flexural reinforcement, ratio of the upper reinforcement, and volume fraction of steel fibers were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions may be useful for designers, have been raised, and represented.

Keywords: Nonlinear FEM, Punching shear behavior, Flat slabs and Steel fiber reinforced self compacting concrete (SFRSCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4256
1255 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750oC analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: Carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
1254 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment

Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek

Abstract:

The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).

Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
1253 Analytical Evaluation on Structural Performance and Optimum Section of CHS Damper

Authors: Daniel Y. Abebe, Jeonghyun Jang, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size, section and structural characteristics of circular hollow steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are inexpensive. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √3, nonlinear FE analyses were carried out to evaluate the structural characteristics and effective section (diameter-to-ratio).

Keywords: Circular hollow steel damper, structural characteristics, effective size, effective section, large deformation, FE analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
1252 Adsorptive Removal of Vapors of Toxic Sulfur Compounds using Activated Carbons

Authors: Meenakshi Goyal, Rashmi Dhawan

Abstract:

Adsorption of CS2 vapors has been studied on different types of activated carbons obtained from different source raw materials. The activated carbons have different surface areas and are associated with varying amounts of the carbon-oxygen surface groups. The adsorption of CS2 vapors is not directly related to surface area, but is considerably influenced by the presence of carbonoxygen surface groups. The adsorption decreases on increasing the amount of carbon-oxygen surface groups on oxidation and increases when these surface groups are eliminated on degassing. The adsorption is maximum in case of the 950°-degassed carbon sample which is almost completely free of any associated oxygen. The kinetic data as analysed by Empirical diffusion model and Linear driving force mass transfer model indicate that the adsorption does not involve Fickian diffusion but may be considered as a pseudo first order mass transfer process. The activation energy of adsorption and isosteric enthalpies of adsorption indicate that the adsorption does not involve interaction between CS2 and carbon-oxygen surface groups, but hydrophobic interactions between CS2 and C-C atoms in the carbon lattice.

Keywords: Adsorption, surface groups, adsorption kinetics, isosteric enthalpy of adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
1251 Vickers Indentation Simulation of Buffer Layer Thickness Effect for DLC Coated Materials

Authors: Abdul Wasy, Balakrishnan G., Yi Qi Wang, Atta Ur Rehman, Jung Il Song

Abstract:

Vickers indentation is used to measure the hardness of materials. In this study, numerical simulation of Vickers indentation experiment was performed for Diamond like Carbon (DLC) coated materials. DLC coatings were deposited on stainless steel 304 substrates with Chromium buffer layer using RF Magnetron and T-shape Filtered Cathodic Vacuum Arc Dual system The objective of this research is to understand the elastic plastic properties, stress strain distribution, ring and lateral crack growth and propagation, penetration depth of indenter and delamination of coating from substrate with effect of buffer layer thickness. The effect of Poisson-s ratio of DLC coating was also analyzed. Indenter penetration is more in coated materials with thin buffer layer as compared to thicker one, under same conditions. Similarly, the specimens with thinner buffer layer failed quickly due to high residual stress as compared to the coated materials with reasonable thickness of 200nm buffer layer. The simulation results suggested the optimized thickness of 200 nm among the prepared specimens for durable and long service.

Keywords: Thin film, buffer layer. Diamond like Carbon, Vickers indentation, Poisson's ratio, Finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
1250 The Strategy of Creating a Virtual Interactive Platform for the Low-Carbon Open Innovations Relay

Authors: Mykola S. Shestavin

Abstract:

A strategy for the creation of a Virtual Interactive Platform (or Networking Platform) to combine the four web-baseness of expert systems on the transfer and diffusion of low-carbon technologies. It used the concept of “Open Innovation” and “Triple Helix” with regard to theories of “Green Growth” and “Carbon Footprint”. Interpreters expert systems operate on the basis of models of the “Predator-Prey” for the process of transfer and diffusion of technologies, taking into account the features caused by the need to mitigate the effects of climate change.

Keywords: Climate Change, Expert Systems, Low-Carbon Technology, Open Innovation, Virtual Interactive Platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
1249 Mitigation of Nitrate Pollution in Wastewater: A Case Study of the Treatment of Cassava Processing Effluent Using Cassava Peel Carbon Material

Authors: Olayinka Omotosho

Abstract:

The study investigated efficiency cassava peel carbon and Zinc Chloride activated cassava peel carbon at 1:3, 2:3 and 1:1 activation levels in the removal of nitrates from oxidized cassava processing wastewater. Results showed that the CPC and CPAC were effective in adsorption of nitrates. A summary of results from the study revealed that CPAC at 1:3 exhibited the highest initial decontamination (69.5% after 2 hrs) while CPAC at 1:1 activation ratio showed a slower initial decontamination rate. The CPC & CPAC exhibited Langmuir Rα values of 0.15, 0.11, 0.09, and 0.07 for the 0:1, 1:3, 2:3 and 1:1 confirming its suitability as adsorption material.

Keywords: Adsorption, Cassava, Activated Carbon, Nitrate, Isotherm, Langmuir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
1248 Research on Pressed Pile Test and Finite Element Analysis of Large-diameter Steel Pipe Pile of Zhanjiang Port

Authors: Ran Zhao, Zhi-liang Dong, You-yuan Wang, Lin-wang Su

Abstract:

In order to study pressed pile test and ultimate bearing capacity character of large-diameter steel pipe pile, based on two high-piled wharfs of Zhanjiang Port, pressed pile test and numerical simulation of three large-diameter steel pipe piles are analyzed in this paper. Anchored pile method is used to pressed pile test, and the curves of Q-s and ultimate bearing capacity are attained. Then the three piles are numerically simulated by ABAQUS, and results of numerical simulation and those of field test are comparatively analyzed. The results show that settlement value of numerical simulation is larger than that of field test in the process of loading, the difference value is widening with the increasing of load, and the ultimate difference value of settlement is 20% to 30%.

Keywords: Large-diameter steel pipe pile, field test, finite element analysis, comparative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1247 Synthesis, Characterization and Performance Study of Newly Developed Amine Polymeric Membrane (APM) for Carbon Dioxide (CO2) Removal

Authors: Rizwan Nasir, Hilmi Mukhtar, Zakaria Man, Dzeti Farhah Mohshim

Abstract:

Carbon dioxide has been well associated with greenhouse effect, and due to its corrosive nature it is an undesirable compound. A variety of physical-chemical processes are available for the removal of carbon dioxide. Previous attempts in this field have established alkanolamine group has the capability to remove carbon dioxide. So, this study combined the polymeric membrane and alkanolamine solutions to fabricate the amine polymeric membrane (APM) to remove carbon dioxide (CO2). This study entails the effect of three types of amines, monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). The effect of each alkanolamine group on the morphology and performance of polyether sulfone (PES) polymeric membranes was studied. Flat sheet membranes were fabricated by solvent evaporation method by adding polymer and different alkanolamine solutions in the N-Methyl-2-pyrrolidone (NMP) solvent. The final membranes were characterized by using Field Emission Electron Microscope (FESEM), Fourier Transform Infrared (FTIR), and Thermo-Gravimetric Analysis (TGA). The membrane separation performance was studied. The PES-DEA and PES-MDEA membrane has good ability to remove carbon dioxide. 

Keywords: Amine Polymeric membrane, Alkanolamine solution, CO2 Removal, Characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
1246 Equilibrium Modeling of Carbon Dioxide Adsorption on Zeolites

Authors: Alireza Behvandi, Somayeh Tourani

Abstract:

High pressure adsorption of carbon dioxide on zeolite 13X was investigated in the pressure range (0 to 4) Mpa and temperatures 298, 308 and 323K. The data fitting is accomplished with the Toth, UNILAN, Dubinin-Astakhov and virial adsorption models which are generally used for micro porous adsorbents such as zeolites. Comparison with experimental data from the literature indicated that the virial model would best determine results. These results may be partly attributed to the flexibility of the virial model which can accommodate as many constants as the data warrants.

Keywords: adsorption models, zeolite, carbon dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
1245 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel

Authors: Sanjeev Kumar, S. K. Nath

Abstract:

Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.

Keywords: HAZ Simulation, Mechanical Properties, Peak Temperature, Ship hull steel, and Weldability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1244 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
1243 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame

Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt

Abstract:

Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.

Keywords: Dissimilar metals, soldering, joint strength, EMI shielding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
1242 Carbon Accumulation in Winter Wheat under Different Growing Intensity and Climate Change

Authors: V. Povilaitis, S. Lazauskas, Š. Antanaitis, S. Sakalauskien, J. Sakalauskait, G. Pšibišauskien, O. Auškalnien, S. Raudonius, P. Duchovskis

Abstract:

World population growth drives food demand, promotes intensification of agriculture, development of new production technologies and varieties more suitable for regional nature conditions. Climate change can affect the length of growing period, biomass and carbon accumulation in winter wheat. The increasing mean air temperature resulting from climate change can reduce the length of growth period of cereals, and without adequate adjustments in growing technologies or varieties, can reduce biomass and carbon accumulation. Deeper understanding and effective measures for monitoring and management of cereal growth process are needed for adaptation to changing climate and technological conditions.

Keywords: carbon, climate change, modeling, winter wheat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
1241 Conceptual Frameworks of Carbon Credit Registry System for Thailand

Authors: Akekaluck Hemtanon, Bunyarit Uyyanonvara

Abstract:

This research explores on the development of the structure of Carbon Credit Registry System those accords to the need of future events in Thailand. This research also explores the big picture of every connected system by referring to the design of each system, the Data Flow Diagram, and the design in term of the system-s data using DES standard. The purpose of this paper is to show how to design the model of each system. Furthermore, this paper can serve as guideline for designing an appropriate Carbon Credit Registry System.

Keywords: CDM, CDM BE, Annex I County, Non-Annex I country, CERs, Kyoto Protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
1240 Removal of Ni(II), Zn(II) and Pb(II) ions from Single Metal Aqueous Solution using Activated Carbon Prepared from Rice Husk

Authors: Mohd F. Taha, Chong F. Kiat, Maizatul S. Shaharun, Anita Ramli

Abstract:

The abundance and availability of rice husk, an agricultural waste, make them as a good source for precursor of activated carbon. In this work, rice husk-based activated carbons were prepared via base treated chemical activation process prior the carbonization process. The effect of carbonization temperatures (400, 600 and 800oC) on their pore structure was evaluated through morphology analysis using scanning electron microscope (SEM). Sample carbonized at 800oC showed better evolution and development of pores as compared to those carbonized at 400 and 600oC. The potential of rice husk-based activated carbon as an alternative adsorbent was investigated for the removal of Ni(II), Zn(II) and Pb(II) from single metal aqueous solution. The adsorption studies using rice husk-based activated carbon as an adsorbent were carried out as a function of contact time at room temperature and the metal ions were analyzed using atomic absorption spectrophotometer (AAS). The ability to remove metal ion from single metal aqueous solution was found to be improved with the increasing of carbonization temperature. Among the three metal ions tested, Pb(II) ion gave the highest adsorption on rice husk-based activated carbon. The results obtained indicate the potential to utilize rice husk as a promising precursor for the preparation of activated carbon for removal of heavy metals.

Keywords: Activated carbon, metal ion adsorption, rice husk, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
1239 Characterising Effects of Applied Loads on the Mechanical Properties of Formed Steel Sheets

Authors: Esther T. Akinlabi, Stephen A. Akinlabi

Abstract:

The purpose of this research study is to investigate the manner in which various loads affect the mechanical properties of the formed mild steel plates. The investigation focuses on examining the cross-sectional area of the metal plate at the centre of the formed mild steel plate. Six mild steel plates were deformed with different loads. The loads applied on the plates had a magnitude of 5 kg, 10 kg, 15 kg, 20 kg, 25 kg and 30 kg. The radius of the punching die was 120 mm and the loads were applied at room temperature. The investigations established that the applied load causes the Vickers microhardness at the cross-sectional area of the plate to increase due to strain hardening. Hence, the percentage increase of the hardness due to the load was found to be directly proportional to the increase in the load. Furthermore, the tensile test results for the parent material showed that the average Ultimate Tensile Strength (UTS) for the three samples was 308 MPa while the average Yield Strength and Percentage Elongation were 227 MPa and 38 % respectively. Similarly, the UTS of the formed components increased after the deformation of the plate, as such it can be concluded that the forming loads alter the mechanical properties of the materials by improving and strengthening the material properties.

Keywords: Applied load, forming and Mechanical Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
1238 Adsorption of Phenol, 3-Nitrophenol and Dyes from Aqueous Solutions onto an Activated Carbon Column under Semi-Batch and Continuous Operation

Authors: I. Moraitopoulos, Z. Ioannou, J. Simitzis

Abstract:

The present study examines the adsorption of phenol, 3-nitrophenol and dyes (methylene blue, alizarine yellow), from aqueous solutions onto a commercial activated carbon. Two different operations, semi-batch and continuous with reflux, were applied. The commercial activated carbon exhibits high adsorption abilities for phenol, 3-nitrophenol and dyes (methylene blue and alizarin yellow) from their aqueous solutions. The adsorption of all adsorbates after 1 h is higher by the continuous operation with reflux than by the semibatch operation. The adsorption of phenol is higher than that of 3-nitrophenol for both operations. Similarly, the adsorption of alizarin yellow is higher than that of methylene blue for both operations. The regenerated commercial activated carbon regains its adsorption ability due to the removal of the adsorbate from its pores during the regeneration.

Keywords: Activated carbon, adsorption, phenols, dyes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
1237 Are PEG Molecules a Universal Protein Repellent?

Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison

Abstract:

Poly (ethylene glycol) (PEG) molecules attached to surfaces have shown high potential as a protein repellent due to their flexibility and highly water solubility. A quartz crystal microbalance recording frequency and dissipation changes (QCM-D) has been used to study the adsorption from aqueous solutions, of lysozyme and α-lactalbumin proteins (the last with and without calcium) onto modified stainless steel surfaces. Surfaces were coated with poly(ethylene imine) (PEI) and silicate before grafting on PEG molecules. Protein adsorption was also performed on the bare stainless steel surface as a control. All adsorptions were conducted at 23°C and pH 7.2. The results showed that the presence of PEG molecules significantly reduced the adsorption of lysozyme and α- lactalbumin (with calcium) onto the stainless steel surface. By contrast, and unexpected, PEG molecules enhanced the adsorption of α-lactalbumin (without calcium). It is suggested that the PEG -α- lactalbumin hydrophobic interaction plays a dominant role which leads to protein aggregation at the surface for this latter observation. The findings also lead to the general conclusion that PEG molecules are not a universal protein repellent. PEG-on-PEI surfaces were better at inhibiting the adsorption of lysozyme and α-lactalbumin (with calcium) than with PEG-on-silicate surfaces.

Keywords: Stainless steel, PEG, QCM-D, protein, PEI layer, silicate layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
1236 Modeling of CO2 Removal from Gas Mixtureby 2-amino-2-methyl-1-propanol (AMP) Using the Modified Kent Eisenberg Model

Authors: H. Pahlavanzadeh, A.R.Jahangiri, I. Noshadi

Abstract:

In this paper, the solubility of CO2 in AMP solution have been measured at temperature range of ( 293, 303 ,313,323) K.The amine concentration ranges studied are (2.0, 2.8, and 3.4) M. A solubility apparatus was used to measure the solubility of CO2 in AMP solution on samples of flue gases from Thermal and Central Power Plants of Esfahan Steel Company. The modified Kent Eisenberg model was used to correlate and predict the vapor-liquid equilibria of the (CO2 + AMP + H2O) system. The model predicted results are in good agreement with the experimental vapor-liquid equilibrium measurements.

Keywords: AMP, Carbon dioxide; loading, Flue gases, Modified Kent Eisenberg model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
1235 Relocation of Plastic Hinge of Interior Beam-Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames

Authors: P. Wongmatar, C. Hansapinyo, C. Buachart

Abstract:

Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. On the other hand, the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam– column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.

Keywords: Relocation, Plastic hinge, Intermediate bar, Tsection steel, Precast concrete frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3344
1234 Nonlinear Time-History Analysis of 3-Dimensional Semi-rigid Steel Frames

Authors: Phu-Cuong Nguyen, Seung-Eock Kim

Abstract:

This paper presents nonlinear elastic dynamic analysis of 3-D semi-rigid steel frames including geometric and connection nonlinearities. The geometric nonlinearity is considered by using stability functions and updating geometric stiffness matrix. The nonlinear behavior of the steel beam-to-column connection is considered by using a zero-length independent connection element comprising of six translational and rotational springs. The nonlinear dynamic equilibrium equations are solved by the Newmark numerical integration method. The nonlinear time-history analysis results are compared with those of previous studies and commercial SAP2000 software to verify the accuracy and efficiency of the proposed procedure.

Keywords: Geometric nonlinearity, nonlinear time-historyanalysis, semi-rigid connection, stability functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3954