Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31743
Carbon Accumulation in Winter Wheat under Different Growing Intensity and Climate Change

Authors: V. Povilaitis, S. Lazauskas, Š. Antanaitis, S. Sakalauskien, J. Sakalauskait, G. Pšibišauskien, O. Auškalnien, S. Raudonius, P. Duchovskis


World population growth drives food demand, promotes intensification of agriculture, development of new production technologies and varieties more suitable for regional nature conditions. Climate change can affect the length of growing period, biomass and carbon accumulation in winter wheat. The increasing mean air temperature resulting from climate change can reduce the length of growth period of cereals, and without adequate adjustments in growing technologies or varieties, can reduce biomass and carbon accumulation. Deeper understanding and effective measures for monitoring and management of cereal growth process are needed for adaptation to changing climate and technological conditions.

Keywords: carbon, climate change, modeling, winter wheat

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651


[1] IPCC (2007). Intergovernmental Panel on Climate Change Woking Group II. Climate Change 2007: The Physical Science Basis. Solomon S., Qin D., et al. (eds).
[2] R. Lal (2004). Soil Carbon Sequestration to Mitigate Climate Change. Geoderma, Vol. 123, p.1-22.
[3] K. Paustian, O. Andre, H.H. Janzen, R. Lal, P. Smith, H. Tiessen, M. Van Noordwijk and P.L. Woomer. (1997). Agricultural Soils as a Sink to Mitigate CO2 Emissions. Soil Use and Management, Vol 13, p. 230- 244.
[4] P. Reidsma, F. Ewert, A. O. Lansink, and R. Leemans. (2010). Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. European Journal of Agronomy, Vol. 32, p. 91-102.
[5] A.J. Challinor, F. Ewert, S. Arnold, E. Simelton and E. Fraser (2009). Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. Journal of Experimental Botany, Vol. 60, p. 2775-2789.
[6] G. Maracchi, O. Sirotenko, M. Bindi (2005). Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change. Vol. 70, p. 117-135.
[7] Lietuvos TSR atlasas. Maskva. 1981. (In Lithuanian).
[8] Bu─ìien├À A., Antanaitis ┼á., Ma┼íauskien├À A., ┼áimanskait├À D. 2007. Nitrogen and Phosphorus Losses with Drainage Runoff and Field Balance as a Result of Crop Management. Communications in Soil Science and Plant Analysis. Vol. 38, p. 2177 - 2195.
[9] A.G. Clever and D.H. Scarisbrick, (2001). Practical Statistics and Experimental Design for Plant and Crop Science, Wiley, New York . 332 p.
[10] J.E. Olesen, M. Bindi (2002). Consequences of climate changes for European agricultural productivity, land use and policy. European Journal of Agronomy. Vol. 16, p. 239-262.
[11] R. H. Patil, M. Lægdsmand, J.E. Olesen, J.R. Porttwer (2010). Effect of soil warming and rainfall patterns on soil N cycling in northern Europe. Agriculture, Ecosystems and Environment. Vol. 139, p.195-205.
[12] S. G. Brakas, J. B. Aune (2011). Biomass and Carbon Accumulation in Land Use Systems of Claveria, the Philippines. Carbon sequestration potential of Agroforestry systems. Vol. 8, p. 163-175.
[13] Q. Wang, Y. Li, A. Alva (2010). Growing Cover Crops to Improve Biomass Accumulation and Carbon Sequestration: A Phytotron Study. Journal of Environmental Protection, Vol. 1, p. 73-84.
[14] G. Lemaire, E. van Oosterom, J. Sheehy, M.H. Jeuffroy, A. Massignam, L. Rossato (2007). Is crop nitrogen demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crop Research, Vol. 100, p. 91-106.
[15] P. Forster, V. Ramaswamy, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC,Myhre G, Nganga J, Prinn R, Raga G, SchulzM, Van Dorland R (2007) Changes in atmosphericconstituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, MarquisM, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
[16] M. Moriondo, C. Giannakopoulos, M. Bindi (2011). Climate change impact assessment: the role of climate extremes in crop yield simulation. Climate Change, Vol. 104, p. 676-701.
[17] J. Alcamo, J.M. Moreno, B. Nováky, M. Bindi, R. Corobov, Devoy RJN, Giannakopoulos C, Martine, J.E. Olesen, A. Shvidenko (2007). Europe. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 541-580
[18] V. Povilaitis, S. Lazauskas (2010). Winter wheat productivity in relation to water availability and growing intensity. Žemdirbyst├À=Agriculture Vol. 97, p. 59-68.
[19] W. Schlenker, M. J. Roberts (2009). Nonliner temprrature effects indicate severe damage to U.S. crop yield under climate change. PNAS, Vol. 106, p. 15594-15598.
[20] F. Giunta, G. Pruneddu, R. Motzo (2009). Radiation interception and biomass and nitrogen accumulation in different ceral and grain legume species. Field Crop Research, Vol. 110, p. 76-84.
[21] C. Giannakopoulos, P. Le Sager, M. Bindi, M. Moriondo, E. Kostopoulou, C.M. Goodess (2009). Climatic changes and associated impacts in the Mediterranean resulting from global warming. Global Planet Change 68:209-224
[22] G. ┼áabajievien├À, S. Sakalauskien├À, S. Lazauskas, P. Duchovskis, A. Urbonavi─ìiut├À, G. Samuolien├À, R. Ulinskait├À, J. Sakalauskait├À, A. Brazaityt├À, V. Povilaitis (2008). The effect of ambient air temperature and substrate moisture on the physiological parameters of spring barley. Žemdirbyst├À=Agriculture, vol. 95, No. 4, p. 71-80 (in Lithuanian).