Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari
Abstract:
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750oC analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.
Keywords: Carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337831
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488References:
[1] A. Oberlin, M. Endo and T. Koyama, “Filamentous growth of carbon through benzene decomposition”, Journal of Crystal Growth, vol. 32, pp. 335, January 1976.
[2] S. Iijima, “Helical microtubes of graphitic carbon”, Nature, vol. 354, pp.56-58, November 1991.
[3] S. Iijima and T. Ichihashi, “Single-Shell Carbon Nanotubes of 1-nm Diameter”, Nature, vol. 363, pp.603-605, June 1993.
[4] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, vol. 363, pp.605-607, June 1993.
[5] Q. Ngo, B. A.Cruden, A. M. Cassell, G. Sims, M. Meyyappan, J. Li and C.Y.Yang, “Thermal Interface Properties of Cu-Filled Vertically Aligned Carbon Nanofiber Arrays”, Nano Letters, vol. 4, pp. 2403-2407, December 2004.
[6] A. P. Graham, G.S. Duesberg, R.V. Seidel, M. Liebau, E.Unger, W.Pamler, F. Kreupl, and W. Hoenlein, “Carbon Nanotubes for Microelectronics”, Small, vol. 1, pp.382-390, April 2005.
[7] O. M. Kuttel, O. Groening, C. Emmenegger and L. Schlapbach, “Electron Field Emission From Phase Pure Nanotube Films Grown in a Methane/Hydrogen Plasma”, Applied Physics Letters, vol. 73, pp.2113-2115, October 1998.
[8] J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han and M. Meyyappan, “Bottom-up approach for carbon nanotube interconnects”, Applied Physics Letters, vol. 82, pp.2491-2493, April 2003.
[9] J. K.. Kasi, A. K. Kasi, M. Bokhari, N. Afzulpurkar, “Synthesis of Unique Structures of Carbon Nanotube at Anodic Aluminum Oxide Template” Applied Mechanics and Materials, vol. 421, pp. 319-323, September, 2013.
[10] M.A. Ermakova, D.Y. Ermakov and G.G. Kuvshinov, “Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts”, Applied Catalysis A: General, vol. 201, pp.61-70, June 2000.
[11] N.M. Rodriguez, A. Chambers and R.T.K. Baker, “Catalytic engineering of carbon nanostructures”, Langmuir, vol. 11, pp. 3862-3866, October 1995.
[12] N.M. Rodriguez, M. S. Kim, F. Fortin, I. Mochida and R.T.K. Baker, “Carbon deposition on iron–nickel alloy particles”, Applied Catalysis A: General, vol. 48, pp.265-282, January 1997.
[13] A. K. Kasi, M.W. Ashraf, J.K. Kasi, S. Tayyaba and N. Afzulpurkar, “Low cost nano-membrane fabrication and electro-polishing system”, World Academy of Science, Engineering and Technology, vol. 64, pp.56-58, April 2010.
[14] M. Hasan, A. K. Kasi, J. K. Kasi and N. Afzulpurkar, “Anodic aluminum oxide (AAO) to AAO bonding and their application for fabrication of 3D microchannel”, Nanoscience and Nanotechnology Letters, vol. 4, pp. 569-573, December 2012.
[15] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays made by two step Replication of Honeycomb structures of Anodic Alumina”, Science, vol. 268, pp.1466-1468, June 1995.
[16] J. K. Kasi, A. K. Kasi, N. Afzalpurkar, M. Hasan, S. Pratontep and A. Poyai, “Fabrication of three dimensional AAO structures”, Nanoscience and Nanotechnology Letters, vol. 4, pp. 537-543, December 2012.
[17] M. K. McQuaig Jr., A. Toro, W. Van Geertruyden and W.Z. Misiolek, “The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide”, Journal of Material Science, vol. 46, pp.243-253, January 2011.
[18] A. K. Kasi, J. K. Kasi, N. Afzulpurkar, E. Bohez and A. Tuantranont, “Continuous voltage detechement and etching (CVDE) technique for fabrication of nano-porous AAO tubular membrane”, Nanoscience and Nanotechnology Letter, vol. 4, pp. 530-536, December 2012.
[19] C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach”, Science, vol. 266, pp.1961-1966, December 1994.
[20] A.K. Kasi, N. Afzulpurkar, J.K. Kasi, A. Tuantranont and P. Dulyaseree, “Utilization of cracks to fabricate anodic aluminum oxide nanoporous tubular and rectangular membrane”, Journal of Vacuum Science and Technology: B, vol. 29, pp.D1071-D1077, July 2011.
[21] M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray, A. H. Windle, “Electrochemical Capacitance of Nanocomposite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole”, Advanced Materials, vol. 14,pp. 382- 385, March 2002.
[22] M. Hughes, G. Z. Chen, M. S. Shaffer, D. J. Fray, A. H. Windle, “Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole”, Chemistry of Materials, vol. 14, pp.1610–1613, February 2002.
[23] B. J. Yoon, S. H. Jeong, K. H. Lee, H. S. Kim, C. G. Park, and J. H. Han, "Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes," Chemical Physics Letters, vol. 388, pp. 170-174, April 2004.
[24] C. Nutzenadel, A. Zuttel, D. Chartouni, L Schlapbach, “Electrochemical storage of hydrogen in nanotube materials”, Electrochemical and Solid-States Letters, vol. 2, pp. 30-32, January 1999.
[25] A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler and R. E. Smalley, “Solid-State Electrochemistry of the Li Single Wall Carbon Nanotube System” Journal of Electrochemical Society, vol.147, pp. 2845–2852, April 2000.
[26] H. C. Shin, M. L. Liu, B. Sadanadan and A. M. Rao, “ Electrochemical Insertion of Lithium into Multi-Walled Carbon Nanotubes Prepared by Catalytic Decomposition”, Journal of Power Sources, vol. 112, pp.216-221. October 2002.
[27] C. M. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes”, Applied Physics Letters, vol. 70, pp. 1480-1482, January 1997.
[28] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, “Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes”, Advanced Functional Materials, vol. 11, pp. 387–392, October 2001.
[29] B.J. Yoon, S.H. Jeong, K.H. Lee, H.S. Kim, C.G. Park and J.H. Han, “Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes”, Chemical Physics Letter, vol. 388, pp. 170–174, April 2004.
[30] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, “Structural ( n,m) Determination of isolated single-wall carbon nanotubes by resonant Raman scattering”, Physical Review Letter, vol. 86, pp. 1118-1121, February 2001.