Search results for: Fuzzy mathematical programming
2128 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill
Authors: S. Khosravi, A. Afshar, F. Barazandeh
Abstract:
In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22052127 An Empirical Analysis of Arabic WebPages Classification using Fuzzy Operators
Authors: Ahmad T. Al-Taani, Noor Aldeen K. Al-Awad
Abstract:
In this study, a fuzzy similarity approach for Arabic web pages classification is presented. The approach uses a fuzzy term-category relation by manipulating membership degree for the training data and the degree value for a test web page. Six measures are used and compared in this study. These measures include: Einstein, Algebraic, Hamacher, MinMax, Special case fuzzy and Bounded Difference approaches. These measures are applied and compared using 50 different Arabic web pages. Einstein measure was gave best performance among the other measures. An analysis of these measures and concluding remarks are drawn in this study.Keywords: Text classification, HTML documents, Web pages, Machine learning, Fuzzy logic, Arabic Web pages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19062126 Ranking Fuzzy Numbers Based on Lexicographical Ordering
Authors: B. Farhadinia
Abstract:
Although so far, many methods for ranking fuzzy numbers have been discussed broadly, most of them contained some shortcomings, such as requirement of complicated calculations, inconsistency with human intuition and indiscrimination. The motivation of this study is to develop a model for ranking fuzzy numbers based on the lexicographical ordering which provides decision-makers with a simple and efficient algorithm to generate an ordering founded on a precedence. The main emphasis here is put on the ease of use and reliability. The effectiveness of the proposed method is finally demonstrated by including a comprehensive comparing different ranking methods with the present one.Keywords: Ranking fuzzy numbers, Lexicographical ordering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18092125 Jacobi-Based Methods in Solving Fuzzy Linear Systems
Authors: Lazim Abdullah, Nurhakimah Ab. Rahman
Abstract:
Linear systems are widely used in many fields of science and engineering. In many applications, at least some of the parameters of the system are represented by fuzzy rather than crisp numbers. Therefore it is important to perform numerical algorithms or procedures that would treat general fuzzy linear systems and solve them using iterative methods. This paper aims are to solve fuzzy linear systems using four types of Jacobi based iterative methods. Four iterative methods based on Jacobi are used for solving a general n × n fuzzy system of linear equations of the form Ax = b , where A is a crisp matrix and b an arbitrary fuzzy vector. The Jacobi, Jacobi Over-Relaxation, Refinement of Jacobi and Refinement of Jacobi Over-Relaxation methods was tested to a five by five fuzzy linear system. It is found that all the tested methods were iterated differently. Due to the effect of extrapolation parameters and the refinement, the Refinement of Jacobi Over-Relaxation method was outperformed the other three methods.
Keywords: Fuzzy linear systems, Jacobi, Jacobi Over- Relaxation, Refinement of Jacobi, Refinement of Jacobi Over- Relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24102124 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modeled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.
Keywords: Ride comfort, air spring, bus, fuzzy logic controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18782123 On the Solution of Fully Fuzzy Linear Systems
Authors: Hsuan-Ku Liu
Abstract:
A linear system is called a fully fuzzy linear system (FFLS) if quantities in this system are all fuzzy numbers. For the FFLS, we investigate its solution and develop a new approximate method for solving the FFLS. Observing the numerical results, we find that our method is accurate than the iterative Jacobi and Gauss- Seidel methods on approximating the solution of FFLS.
Keywords: Fully fuzzy linear equations, iterative method, homotopy perturbation method, approximate solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17452122 A Comparative Study of Web-pages Classification Methods using Fuzzy Operators Applied to Arabic Web-pages
Authors: Ahmad T. Al-Taani, Noor Aldeen K. Al-Awad
Abstract:
In this study, a fuzzy similarity approach for Arabic web pages classification is presented. The approach uses a fuzzy term-category relation by manipulating membership degree for the training data and the degree value for a test web page. Six measures are used and compared in this study. These measures include: Einstein, Algebraic, Hamacher, MinMax, Special case fuzzy and Bounded Difference approaches. These measures are applied and compared using 50 different Arabic web-pages. Einstein measure was gave best performance among the other measures. An analysis of these measures and concluding remarks are drawn in this study.
Keywords: Text classification, HTML, web pages, machine learning, fuzzy logic, Arabic web pages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22352121 Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application
Authors: K. M. Alsager, N. O. Alshehri
Abstract:
In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.Keywords: Single valued neutrosophic hesitant set, single valued neutrosophic hesitant relation, single valued neutrosophic hesitant fuzzy rough set, decision making method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12862120 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification
Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal
Abstract:
In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.
Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13612119 Production Plan and Technological Variants Optimization by Goal Programming Methods
Authors: Tunjo Perić, Franjo Bratić
Abstract:
In this paper, the goal programming methodology for solving multiple objective problem of the technological variants and production plan optimization has been applied. The optimization criteria are determined and the multiple objective linear programming model for solving a problem of the technological variants and production plan optimization is formed and solved. Then the obtained results are analysed. The obtained results point out to the possibility of efficient application of the goal programming methodology in solving the problem of the technological variants and production plan optimization. The paper points out on the advantages of the application of the goal programming methodology compare to the Surrogat Worth Trade-off method in solving this problem.Keywords: Goal programming, multi objective programming, production plan, SWT method, technological variants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19172118 Fuzzy Types Clustering for Microarray Data
Authors: Seo Young Kim, Tai Myong Choi
Abstract:
The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.Keywords: Clustering, microarray data, Fuzzy-type clustering, Validation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15202117 Implementation of a Serializer to Represent PHP Objects in the Extensible Markup Language
Authors: Lidia N. Hernández-Piña, Carlos R. Jaimez-González
Abstract:
Interoperability in distributed systems is an important feature that refers to the communication of two applications written in different programming languages. This paper presents a serializer and a de-serializer of PHP objects to and from XML, which is an independent library written in the PHP programming language. The XML generated by this serializer is independent of the programming language, and can be used by other existing Web Objects in XML (WOX) serializers and de-serializers, which allow interoperability with other object-oriented programming languages.Keywords: Interoperability, PHP object serialization, PHP to XML, web objects in XML, WOX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7532116 A Study of Neuro-Fuzzy Inference System for Gross Domestic Product Growth Forecasting
Authors: Ε. Giovanis
Abstract:
In this paper we present a Adaptive Neuro-Fuzzy System (ANFIS) with inputs the lagged dependent variable for the prediction of Gross domestic Product growth rate in six countries. We compare the results with those of Autoregressive (AR) model. We conclude that the forecasting performance of neuro-fuzzy-system in the out-of-sample period is much more superior and can be a very useful alternative tool used by the national statistical services and the banking and finance industry.Keywords: Autoregressive model, Forecasting, Gross DomesticProduct, Neuro-Fuzzy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16022115 Maximum Power Point Tracking Using FLC Tuned with GA
Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli
Abstract:
The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.
Keywords: Fuzzy logic controller (FLC), fuzzy logic (FL), genetic algorithm (GA), maximum power point (MPP), maximum power point tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26252114 Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images
Authors: G.Wiselin Jiji, L.Ganesan
Abstract:
Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.Keywords: Fuzzy Texture Unit, Fuzzy Texture Spectrum, andPattern Recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16972113 Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Authors: C. Ardil
Abstract:
This article presents a multiple criteria evaluation approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The fighter aircraft evaluation and selection decision making problem is modeled in a fuzzy environment with triangular fuzzy numbers. The fuzzy decision information related to the fighter aircraft selection problem is taken into account in ordering the alternatives and selecting the best candidate. The basic fuzzy TOPSIS procedure steps transform fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A practical numerical example illustrates the proposed approach to the fighter aircraft selection problem.
Keywords: triangular fuzzy number (TFN), multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4722112 Algorithmic Method for Efficient Cruise Program
Authors: Pelaez Verdet, Antonio, Loscertales Sanchez, Pilar
Abstract:
One of the mayor problems of programming a cruise circuit is to decide which destinations to include and which don-t. Thus a decision problem emerges, that might be solved using a linear and goal programming approach. The problem becomes more complex if several boats in the fleet must be programmed in a limited schedule, trying their capacity matches best a seasonal demand and also attempting to minimize the operation costs. Moreover, the programmer of the company should consider the time of the passenger as a limited asset, and would like to maximize its usage. The aim of this work is to design a method in which, using linear and goal programming techniques, a model to design circuits for the cruise company decision maker can achieve an optimal solution within the fleet schedule.Keywords: Itinerary design, cruise programming, goalprogramming, linear programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492111 A Study on Linking Upward Substitution and Fuzzy Demands in the Newsboy-Type Problem
Authors: Pankaj Dutta, Debjani Chakraborty
Abstract:
This paper investigates the effect of product substitution in the single-period 'newsboy-type' problem in a fuzzy environment. It is supposed that the single-period problem operates under uncertainty in customer demand, which is described by imprecise terms and modelled by fuzzy sets. To perform this analysis, we consider the fuzzy model for two-item with upward substitution. This upward substitutability is reasonable when the products can be stored according to certain attribute levels such as quality, brand or package size. We show that the explicit consideration of this substitution opportunity increase the average expected profit. Computational study is performed to observe the benefits of product's substitution.Keywords: Fuzzy demand, Newsboy, Single-period problem, Substitution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14202110 Genetic-Fuzzy Inverse Controller for a Robot Arm Suitable for On Line Applications
Authors: Abduladheem A. Ali, Easa A. Abd
Abstract:
The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Geno-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (indirect controller) has two genetic-fuzzy blocks, the first as controller, the second as identifier. The identification method is based on inverse identification technique. The proposed controller it tested in normal and load disturbance conditions.Keywords: Fuzzy network, genetic algorithm, robot control, online genetic control, parameter identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14582109 Intuitionistic Fuzzy Dual Positive Implicative Hyper K- Ideals
Authors: M.M. Zahedi, L. Torkzadeh
Abstract:
In this note first we define the notions of intuitionistic fuzzy dual positive implicative hyper K-ideals of types 1,2,3,4 and intuitionistic fuzzy dual hyper K-ideals. Then we give some classifications about these notions according to the level subsets. Also by given some examples we show that these notions are not equivalent, however we prove some theorems which show that there are some relationships between these notions. Finally we define the notions of product and antiproduct of two fuzzy subsets and then give some theorems about the relationships between the intuitionistic fuzzy dual positive implicative hyper K-ideal of types 1,2,3,4 and their (anti-)products, in particular we give a main decomposition theorem.Keywords: hyper K-algebra, intuitionistic fuzzy dual positive implicative hyper K-ideal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12982108 Fuzzy Modeling Tool for Creating a Component Model of Information System
Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes, Jaroslav Prochazka, Pavel Smolka, Juraj Masar, Martin Pesl
Abstract:
This paper focuses on creating a component model of information system under uncertainty. The paper identifies problem in current approach of component modeling and proposes fuzzy tool, which will work with vague customer requirements and propose components of the resulting component model. The proposed tool is verified on specific information system and results are shown in paper. After finding suitable sub-components of the resulting component model, the component model is visualised by tool.
Keywords: Component, component model, fuzzy, fuzzy rules, fuzzy sets, information system, modelling, tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16432107 Preconditioned Jacobi Method for Fuzzy Linear Systems
Authors: Lina Yan, Shiheng Wang, Ke Wang
Abstract:
A preconditioned Jacobi (PJ) method is provided for solving fuzzy linear systems whose coefficient matrices are crisp Mmatrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the preconditioned Jacobi method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.
Keywords: preconditioning, M-matrix, Jacobi method, fuzzy linear system (FLS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19042106 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes
Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi
Abstract:
Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.
Keywords: Back stepping, Bergman Model, Nonlinear control, Sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35362105 Enhancement of MIMO H2S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array
Authors: Muhammad M. A. S. Mahmoud
Abstract:
Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H2S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. New design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.Keywords: Gas separator, gas sweetening, intelligent controller, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15032104 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules
Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang
Abstract:
In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.Keywords: Data mining, association rule, fuzzy frequent patterngrowth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17992103 Stochastic Programming Model for Power Generation
Authors: Takayuki Shiina
Abstract:
We consider power system expansion planning under uncertainty. In our approach, integer programming and stochastic programming provide a basic framework. We develop a multistage stochastic programming model in which some of the variables are restricted to integer values. By utilizing the special property of the problem, called block separable recourse, the problem is transformed into a two-stage stochastic program with recourse. The electric power capacity expansion problem is reformulated as the problem with first stage integer variables and continuous second stage variables. The L-shaped algorithm to solve the problem is proposed.Keywords: electric power capacity expansion problem, integerprogramming, L-shaped method, stochastic programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18242102 Determination of the Quality of the Machined Surface Using Fuzzy Logic
Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović
Abstract:
This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.
Keywords: Metal machining, surface roughness, fuzzy logic, process modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6912101 Fuzzy PID based PSS Design Using Genetic Algorithm
Authors: Ermanu A. Hakim, Adi Soeprijanto, Mauridhi H.P
Abstract:
This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system
Keywords: Fuzzy PID, Genetic Algorithm, power system stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17472100 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure
Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng
Abstract:
The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.
Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, type 2 fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21232099 Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs
Authors: Pilar Rey-del-Castillo, Jesús Cardeñosa
Abstract:
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.
Keywords: Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778