Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30174
Ranking Fuzzy Numbers Based on Lexicographical Ordering

Authors: B. Farhadinia

Abstract:

Although so far, many methods for ranking fuzzy numbers have been discussed broadly, most of them contained some shortcomings, such as requirement of complicated calculations, inconsistency with human intuition and indiscrimination. The motivation of this study is to develop a model for ranking fuzzy numbers based on the lexicographical ordering which provides decision-makers with a simple and efficient algorithm to generate an ordering founded on a precedence. The main emphasis here is put on the ease of use and reliability. The effectiveness of the proposed method is finally demonstrated by including a comprehensive comparing different ranking methods with the present one.

Keywords: Ranking fuzzy numbers, Lexicographical ordering.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061497

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450

References:


[1] S. Abbasbandy, T. Hajjari, A new approach for ranking of trapezoidal fuzzy numbers, Computers and Mathematics with Applications, In press.
[2] J. Baldwin and N. Guild, Comparison of fuzzy sets on the same decision space, Fuzzy Sets and Systems, Vol. 2, (1979), 213-233.
[3] G. Bortolan and R. Degani, A review of some methods for ranking fuzzy numbers, Fuzzy Sets and Systems, Vol. 15, (1985), 1-19.
[4] S. J. Chen and C. L. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, Berlin, (1992).
[5] S.-H. Chen, Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and Systems, Vol. 17, (1985), 113129.
[6] C. H. Cheng and D. L. Mon, Fuzzy system reliability analysis by confidence interval, Fuzzy Sets and Systems, Vol. 56, (1993), 29-35.
[7] C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and Systems, Vol. 95, (1998), 307-317.
[8] F. Choobineh and H. Li, An index for ordering fuzzy numbers, Fuzzy Sets and Systems, Vol. 54, (1993), 287294.
[9] T. C. Chu and C. T. Tsao, Ranking fuzzy numbers with an area between the centroid point and original point, Computers and Mathematics with Applications, Vol. 43, (2002), 111-117.
[10] Y. Deng, Z. Zhenfu and L. Qi, Ranking fuzzy numbers with an area method using radius of gyration, Computers and Mathematics with Applications, Vol. 51, (2006), 1127-1136.
[11] P. Fortemps and M. Roubens, Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems, Vol. 82, (1996), 319-330.
[12] E. S. Lee and R. J. Li, Comparison of fuzzy numbers based on the probability measure of fuzzy events, Computers and Mathematics with Applications, Vol. 15, (1988), 887-896.
[13] T. S. Lious and M. J. Wang, Ranking fuzzy numbers with integral value, Fuzzy Sets and Systems, Vol. 50, (1992), 247-255.
[14] X. Liu, Measuring the satisfaction of constraints in fuzzy linear programming, Fuzzy Sets and Systems, Vol. 122, (2001), 263-275.
[15] B. Matarazzo and G. Munda, New approaches for the comparison of LR fuzzy numbers: a theoretical and operational analysis, Fuzzy Sets and Systems, Vol. 118, (2001), 407-418.
[16] I. Requena, M. Delgado and J. I. Verdegay, Automatic ranking of fuzzy numbers with the criterion of decision-maker learnt by an artificial neural network, Fuzzy Sets and Systems, Vol. 73, (1995), 185-199.
[17] Y. J. Wang and H. S. Lee, The revised method of ranking fuzzy numbers with an area between the centroid and original points, Computers and Mathematics with Applications, Vol. 55, (2008), 2033-2042.
[18] X. Wang, E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Systems, Vol. 118, (2001), 375-385.
[19] R.R. Yager, On choosing between fuzzy subsets, Kybernetcs, Vol. 9, (1980), 151-154.
[20] R. R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, Vol. 24, (1981), 143-161.
[21] J.-S. Yao and K. Wu, Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets and Systems, Vol. 116, (2000), 275-288.
[22] H. J. Zimmermann, Fuzzy set theory and its applications, Fourth Edition, Kluwer Academic Publishers, (1998).