
Abstract—The main goal of microarray experiments is to 

quantify the expression of every object on a slide as precisely as 

possible, with a further goal of clustering the objects.  Recently, 

many studies have discussed clustering issues involving similar 

patterns of gene expression. This paper presents an application 

of fuzzy-type methods for clustering DNA microarray data that 

can be applied to typical comparisons. Clustering and analyses 

were performed on microarray and simulated data. The results 

show that fuzzy-possibility c-means clustering substantially 

improves the findings obtained by others. 

Keywords—Clustering, microarray data, Fuzzy-type clustering, 

Validation 

I. INTRODUCTION

ICROARRAY technology can create an enormous 

amount of data quickly. It is a welcome new tool for 

studying such broad problems as the classification of tumors in 

biology and medicine. Although microarray experiments are 

information rich, analyzing the large amount of data obtained 

using this technology requires extensive data mining to identify 

groups of objects that share similar expression profiles [1]. For 

large amounts of data, clustering methods play a major role in 

finding groups of objects with similar functions that evince 

similar expression patterns of co-regulation [2], [3]. 

A number of methods have been proposed for clustering 

microarray data. Hierarchical clustering [3], [4], 

self-organizing maps [2], K-means [5], and fuzzy c-means [6] 

have all been successful in particular applications [7] and are 

very popular for clustering DNA microarray data. Hierarchical 

clustering produces dendrograms, in which each branch forms 

a group of objects (or genes) that have a higher-order 

relationship between clusters and profiles. One major 

shortcoming of this method is that it cannot find co-expressed 

objects when analyzing large amounts of microarray data, 

which have been collected under various biological conditions 

[1]. Moreover, the hierarchical clustering dendrogram is not 
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unique and does not reflect the multiple ways in which the 

expression patterns of objects can be similar [8]. K-means 

clustering partitions data into c clusters such that objects in the 

same cluster are more similar to each other, i.e., the clusters are 

internally similar, but externally dissimilar. K-means clustering 

requires a fixed number of clusters based on previous 

knowledge of the system. These two methods result in different 

conclusions for the same microarray data owing to the different 

clustering techniques [9], [10]. The best-known clustering is 

c-means clustering, which minimizes the mean of square error. 

As the membership function of c-means is 1 or 0, it may not 

reflect the practical relation between the object and prototype 

[11]. There are two ways to tackle this drawback: fuzzy set and 

probability theory. 

Fuzzy clustering provides a systematic, unbiased way to 

change precise values into several descriptors of cluster 

memberships [12]. These methods provide more information 

on the degree of similarity of each object. The main advantage 

of fuzzy clustering in microarray data analysis is that it explains 

the noise in the data. The fuzzy c-means (FCM) method [12] is 

one the most widely used fuzzy clustering methods for 

microarrays. Owing to constraints, membership cannot be 

translated as the typicality of the object for each cluster. FCM 

clustering attempts to find the most characteristic object in each 

cluster, which can be considered the center of the cluster, and 

then, the degree of membership for each object in the cluster 

[13]. However, the problem with FCM is that noise points can 

be given very similar membership in each cluster. To overcome 

this problem, [14] proposed possibilistic c-means clustering 

(PCM), which dilutes the constraint, and measures the absolute 

typicality of an object in a cluster. PCM clustering has the 

advantage of finding noise points, because a distant noisy point 

will belong to clusters with small possibilistic memberships. 

Therefore, it does not have a crucial effect on the resulting 

clusters. In return, PCM is very sensitive to good initialization, 

as well as the choice of additional parameters, and sometimes 

makes coincident clusters [15]. However, the memberships and 

typicalities are both important for correct interpretation of the 

data sub-structure. Pal et al. [15] proposed fuzzy-possibilistic 

c-means (FPCM) clustering, which produces both 

memberships and typicalities, along with the centers for each 

cluster. 

This paper examines the application of fuzzy-type clustering 

to microarray data, and compares the performance of these 

clustering methods with existing methods. We also evaluate 

each of these clustering methods with validation measures for 

real-life and simulated datasets. 
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II. MATERIALS AND METHODS

A. Data description 

Leukemia dataset: We used the leukemia dataset of [16], 

which consists of 38 learning samples on Affymetrix 

high-density oligonucleotide chips containing 7,129 human 

genes that are available to the public [17]. The goal of this 

experiment was to identify genes that were differentially 

expressed in 8 T-lineage acute lymphoblastic leukemia (ALL) 

patients, 19 B-lineage ALL patients, and 11 acute myeloid 

leukemia (AML) patients. 

Melanoma dataset: The melanoma dataset is described in 

[18] and is available to the public [19]. This dataset was 

acquired from a study of gene expression in two types of 31 

cutaneous melanomas and 7 controls. Gene expression levels 

were measured using cDNA microarrays containing 8,150 

human genes, of which 3,613 were also identified. These ratios 

were transformed to a base 2 logarithmic scale. 

Simulated datasets: The first dataset (simulation 1) [20] 

consists of two elongated clusters in two dimensions. Cluster 1 

was generated by setting x1 = x2 = t, with t taking on 25 equally 

spaced values from -1 to 1, and adding Gaussian noise with a 

standard deviation of 0.1 to each variable. Cluster 2 was 

generated in the same way, except that the value 5 was added to 

each variable. The second dataset (simulation 2) consisted of 

three overlapping clusters in two dimensions. Two variables in 

each of the three clusters had bivariate normal distributions 

with mean vectors (0,0), (2,-2), and (-2,2), respectively, with 

covariance matrix , where the diagonal elements are 1, and the 

off-diagonal elements are 0.5. In the three clusters, 25, 25, and 

50 objects were generated. 

B. Data pre-processing 

A large number of genes exhibit nearly constant expression 

levels across the object and are not useful for clustering. To 

find significant genes, the SAM [21] method was used across 

multi-classes, and 5% significant genes were selected from 

each dataset. The 5% selection of genes resembles a real 

biological situation, as in [22]. The expression levels were 

normalized by subtracting the median and by dividing its 

quantile range across variable genes. 

C. Fuzzy- type clustering methods 

The advantage of FCM is that it always converges, while 

FCM searches only for the clustering solution closest to the 

starting center and one expects a low degree of membership for 

noisy points. PCM clustering was proposed to relax the 

constraint condition of FCM clustering [14]. PCM clustering 

sometimes helps when dealing with noisy data and this can 

sometimes be advantageous when we start with a large value of 

clusters and get less distinct clusters. Conversely, coincident 

clusters may result because the columns and rows of the 

typicality matrix are independent of each other. The constraint 

of the FCM, for an object i, makes it difficult to interpret 

membership as the typicality of a data point in the cluster. 

When estimating the cluster centers, typicality is an important 

means for lessening the undesirable effects of outliers [15]. 

Therefore, membership and typicality are both important for 

correct interpretation of the data substructure. FPCM clustering 

[15] involves defining an objective function that depends on 

the memberships and typicalities. The purpose of the clustering 

is to evolve a partition matrix W(X) of a given dataset, X = {x1,

x2, …, xn}, to find c clusters. Here, xi represents the normalized 

expression level or log2 of the expression level of an object i.

FPCM partitions X into c fuzzy subsets by minimizing the 

following objective function: 
c
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where Jm represents the objective function defining the quality 

of the result obtained for prototypes V and membership W, and 

m is the degree of fuzzification in the clustering. A typical value 

of m is 2. The membership degrees wik and typicalities tik are 

defined such that m,n > 1, 1,0 ikik tw , 1
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ikw  for i,

i=1,…,n, and 1
1

n

i
ikt  for k, k=1,…,c. k is used to scale tik

such that xi – vk
2= k. Scaling is not a necessary step in 

FPCM, but it may help when interpreting the typicality values 

[14]. V =(vk) is the cluster center or prototype, and xi – vk
2 is 

the Euclidean distance between each object and a fuzzy 

prototype. 

D. Validation methods 

Silhouette index: Kaufman and Rousseeuw [23] suggested 

selecting the number of clusters such that k 2, which gives the 

largest average silhouette width, j

n

i
j nissilave

j
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, where nj

is the number of objects in the jth cluster. The silhouette width 

for the ith object in the jth cluster is defined as:  
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Here, a(i) is the average distance between the ith object and all 

of the objects clustered in the jth cluster, and b(i) is the smallest 

average distance between the ith object and all of the objects 

clustered in cluster l ( ljklj ,,1 )

Adjusted Rand index: This method computes the extent of 

agreement between two partitions. Given the set D={o1, o2, …, 

on}, suppose U={u1, u2, …, uR} and V={v1, v2, …, vC} represent 

two different partitions of the objects in D. Here, for 

Rii '1  and Cjj '1 , Dvu j
C
ji

R
i 11  and nij is 

the number of objects that are in both classes ui and vj, and ni

and nj are the number of objects in classes ui and vj, respectively. 

The adjusted Rand index is as follows [17]: 
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Please refer to [24] for a detailed description of the adjusted 

Rand index. For good clustering, we expect these values to be 

high. This is a useful measure when comparing two methods 

producing a different number of clusters. 
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III. EXPERIMENTAL RESULTS

We conducted two experiments to examine the performance 

reliability of the fuzzy-type clustering methods. First, we tested 

cluster validation to obtain the optimal number of clusters using 

the silhouette index, and then, we measured the extent of 

agreement between two different cluster sub-structures 

obtained for the same set of data points using the adjusted Rand 

index. 

A. Terminal memberships and typicalities from FPCM 

Table I shows the terminal membership (w) and typicality (t)

values obtained on applying FPCM to the leukemia and 

melanoma datasets. FPCM clustering provides a more 

informative description of the data than FCM alone, since it 

provides membership information. From the leukemia dataset, 

we can see that object numbers 10, 12, 30, and 31 are more 

equal to the membership values for each cluster, and their 

typicalities to the three clusters are very similar. In addition, 

from the melanoma data, object numbers 2, 4, 10, 24, 26, and 

30 are closer to equal than the other objects in their membership 

values for either cluster, and their typicalities are similar. This 

suggests that these points are outliers. The most typical points 

for each of the three clusters in the leukemia data are object 

numbers (4,6), (17,20), and (22,23), respectively, and are 

object numbers 27 and 9 in either cluster of the melanoma data. 

TABLE I

TERMINAL MEMBERSHIPS AND TYPICALITIES FROM FPCM

 Leukemia (c=3) Melanoma (c=2) 

Obj w1 w2 w3 t1 t2 t3 w1 w2 t1 t2 

1 0.52 0.25 0.25 0.05 0.02 0.01 0.28 0.71 0.01 0.02

2 0.67 0.15 0.17 0.06 0.01 0.00 0.48 0.51 0.03 0.02

3 0.65 0.16 0.17 0.03 0.00 0.00 0.35 0.64 0.04 0.04

4 0.75 0.11 0.12 0.09 0.01 0.00 0.48 0.51 0.02 0.01

5 0.66 0.16 0.16 0.04 0.00 0.00 0.23 0.76 0.01 0.03

6 0.80 0.09 0.10 0.12 0.01 0.00 0.23 0.77 0.02 0.04

7 0.53 0.23 0.23 0.04 0.01 0.01 0.32 0.67 0.02 0.03

8 0.68 0.14 0.16 0.05 0.00 0.00 0.27 0.72 0.02 0.03

9 0.14 0.53 0.31 0.01 0.04 0.01 0.20 0.79 0.02 0.05

10 0.14 0.43 0.42 0.01 0.03 0.02 0.48 0.51 0.03 0.02

11 0.16 0.58 0.25 0.01 0.04 0.01 0.22 0.78 0.02 0.04

12 0.16 0.42 0.41 0.01 0.03 0.02 0.22 0.77 0.02 0.06

13 0.18 0.57 0.23 0.00 0.02 0.00 0.26 0.73 0.01 0.02

14 0.16 0.62 0.21 0.00 0.02 0.00 0.24 0.75 0.01 0.03

15 0.21 0.51 0.27 0.01 0.02 0.00 0.24 0.75 0.02 0.04

16 0.20 0.52 0.27 0.01 0.02 0.00 0.20 0.79 0.01 0.03

17 0.11 0.65 0.22 0.01 0.07 0.01 0.37 0.62 0.02 0.02

18 0.17 0.58 0.24 0.01 0.02 0.00 0.19 0.80 0.01 0.03

19 0.16 0.56 0.26 0.01 0.04 0.01 0.21 0.78 0.01 0.04

20 0.11 0.67 0.21 0.01 0.08 0.01 0.27 0.72 0.01 0.02

21 0.13 0.64 0.22 0.01 0.05 0.01 0.23 0.76 0.01 0.02

22 0.09 0.16 0.73 0.01 0.02 0.07 0.21 0.78 0.02 0.04

23 0.07 0.13 0.79 0.02 0.03 0.12 0.22 0.77 0.01 0.02

24 0.13 0.23 0.63 0.02 0.03 0.05 0.51 0.49 0.02 0.01

25 0.12 0.21 0.66 0.02 0.03 0.06 0.60 0.39 0.02 0.01

26 0.11 0.19 0.68 0.02 0.02 0.06 0.53 0.47 0.04 0.02

27 0.15 0.23 0.60 0.01 0.01 0.02 0.79 0.20 0.06 0.01

28 0.14 0.20 0.65 0.01 0.01 0.03 0.70 0.29 0.04 0.01

29 0.14 0.18 0.66 0.02 0.02 0.05 0.63 0.37 0.03 0.01

30 0.25 0.31 0.42 0.03 0.03 0.02 0.52 0.47 0.03 0.02

31 0.19 0.32 0.48 0.01 0.01 0.01 0.63 0.36 0.03 0.01

32 0.15 0.26 0.58 0.01 0.01 0.02 0.69 0.30 0.01 0.00

33 0.14 0.19 0.66 0.01 0.02 0.04 0.75 0.25 0.02 0.00

34 0.20 0.27 0.52 0.01 0.01 0.01 0.63 0.36 0.02 0.01

35 0.13 0.26 0.60 0.01 0.01 0.02 0.70 0.29 0.01 0.00

36 0.12 0.18 0.68 0.02 0.02 0.06 0.75 0.24 0.04 0.00

37 0.14 0.23 0.61 0.01 0.01 0.02 0.71 0.28 0.02 0.00

38 0.15 0.23 0.61 0.01 0.02 0.04 0.64 0.35 0.04 0.01

B. Comparative analysis 

The FPCM method was also compared with hierarchical 

clustering using Ward’s method (HC) and K-means using 

microarray data and simulated data. Tables I and II summarize 

the results of the evaluation. In general, when applied to gene 

expression data, FPCM and K-means clustering were able to 

select the correct number of clusters (Table II), and to establish 

the cluster membership with a high level of accuracy, as 

measured by the adjusted Rand index (Table III).  In Simulation 

1, four outliers were added to the dataset, as described in the 

Materials and Method. When applied to Simulation 1, all the 

clustering methods selected exactly two clusters as the optimal 

cluster, while all of the methods failed to discover the correct 

clusters from Simulation 2, with the overlapping clusters 

(Table II). 
TABLE II 

ESTIMATED NUMBER OF CLUSTERS USING THE SILHOUETTE INDEX 

 Ktrue FPCM HC K-means

Leukemia 3 3 2 3 

Melanoma 2 2 2 2 

Simulation 1 2 2 2(or 3) 2(or 3) 

Simulation 2 3 2 2 2 

Although all of the methods selected the true clusters from 

Simulation 1 using the silhouette index, for the cases with two 

and three clusters, the adjusted Rand index values in Table III 

are equal to the values for HC and K-means, respectively. Fig. 

1 shows that HC and K-means have very similar values of the 

Rand index with two and three clusters for the FPCM method. 

This means that outliers have little effect in the FPCM 

compared with the other methods, as shown in Fig. 1. 

TABLE III

THE ADJUSTED RAND INDEX FOR FPCM, HC, AND K-MEANS. THE VALUE IN 

PARENTHESES IS THE ADJUSTED RAND INDEX CORRESPONDING TO KTRUE 

CLUSTERS (WHEN THIS DIFFERS FROM THE ESTIMATED NUMBER OF CLUSTERS)

 FPCM HC K-means 

Leukemia 0.83 0.45 (0.75) 0.83 

Melanoma 0.31 0.04 0.51 

Simulation 1 0.85 0.85 0.85 

Simulation 2 0.64 (0.91) 0.73 (0.81) 0.64 (0.91) 

Fig. 2 shows the results using FPCM, HC, and K-means for c=2 

and 3 from Simulation 1. For c=2, the results of all of the 

methods are equal, as shown in Fig. 2(a), but for c=3, the result 

using FPCM differs from the other methods, as shown in Fig. 

2(b). For HC and K-means, four outlier points are classified as 

one cluster, while FPCM correctly does not classify outlier 

points as any cluster at c=3. For more detail, the membership 

values of the four outlier points in each clusters are (0.49,0.51), 

(0.49,0.51), (0.48,0.52), and (0.50,0.50), and their possibilities 

are closer to equal than the other points. The typicalities are 

also very small and similar in each cluster for other points. The 

two figures and Tables II and III show that FPCM is much more 

robust than HC and K-means for outlier points. 
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Fig. 1. Plots of the adjusted Rand index from Simulation 1. 

(a) c=2 

(b) c=3 

Fig. 2. Clustering results for Simulation 1 at c=2 and c=3. 

IV. CONCLUSION AND DISCUSSION

This paper examined clustering methods based on fuzzy- 

type, and compared the performance of fuzzy-possibilistic 

c-means clustering using DNA microarray data. FPCM 

clustering was more accurate and consistent than hierarchical 

clustering or the K-means method. Moreover, FPCM and 

K-means both represented the inherent structure of the dataset, 

but FPCM was superior to K-means. Unlike most hierarchical 

clustering methods and K-means, FPCM produces membership 

values, possibility values of typicality, and a set of cluster 

prototypes in the data matrix. Particularly, with FPCM, for a 

dataset with one or more large outliers, as occurs in DNA 

microarray data, it is possible to describe the outlier points 

using data examined using existing methods. 
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