Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Authors: C. Ardil

Abstract:

This article presents a multiple criteria evaluation approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The fighter aircraft evaluation and selection decision making problem is modeled in a fuzzy environment with triangular fuzzy numbers. The fuzzy decision information related to the fighter aircraft selection problem is taken into account in ordering the alternatives and selecting the best candidate. The basic fuzzy TOPSIS procedure steps transform fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A practical numerical example illustrates the proposed approach to the fighter aircraft selection problem.

Keywords: triangular fuzzy number (TFN), multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475

References:


[1] Ardil, C. (2021). Military Combat Aircraft Selection Using Trapezoidal Fuzzy Numbers with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). International Journal of Computer and Information Engineering, 15(12), 630 - 635.
[2] Ardil, C. (2021). Freighter Aircraft Selection Using Entropic Programming for Multiple Criteria Decision Making Analysis. International Journal of Mathematical and Computational Sciences, 15(12), 125 - 132.
[3] Ardil, C. (2021). Comparison of Composite Programming and Compromise Programming for Aircraft Selection Problem Using Multiple Criteria Decision Making Analysis Method.International Journal of Aerospace and Mechanical Engineering, 15(11), 479 - 485.
[4] Ardil, C. (2021). Advanced Jet Trainer and Light Attack Aircraft Selection Using Composite Programming in Multiple Criteria Decision Making Analysis Method. International Journal of Aerospace and Mechanical Engineering, 15(12), 486 - 491.
[5] Ardil, C. (2020). A Comparative Analysis of Multiple Criteria Decision Making Analysis Methods for Strategic, Tactical, and Operational Decisions in Military Fighter Aircraft Selection. International Journal of Aerospace and Mechanical Engineering, 14(7), 275 - 288.
[6] Ardil, C. (2020). Aircraft Selection Process Using Preference Analysis for Reference Ideal Solution (PARIS). International Journal of Aerospace and Mechanical Engineering, 14(3), 80 - 93.
[7] Ardil, C. (2020). Regional Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS). International Journal of Transport and Vehicle Engineering, 14(9), 378 - 388.
[8] Ardil, C. (2020). Trainer Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS). International Journal of Aerospace and Mechanical Engineering, 14(5), 195 - 209.
[9] Saaty, T. L. (1990). How to make a decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48(1), 9-26. doi: 10.1016/0377-2217(90)90057-I
[10] Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83-98. doi: 10.1504/IJSSCI.2008.017590
[11] Saaty, T.L. (1980). Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York.
[12] Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering Systems. PhD Thesis, Faculty of Civil Engineering, Belgrade (in Serbian).
[13] Opricovic, S. (2007). A fuzzy compromise solution for multicriteria problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(3), 363–380.
[14] Opricovic, S., Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.
[15] Hwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.
[16] Chu, T.C. (2002. Facility location selection using fuzzy TOPSIS under group decisions”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 10 No. 6, pp. 687-701.
[17] Choudhary, D. and Shankar, R. (2012. A STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: a case study from India”, Energy, Vol. 42 No. 1, pp. 510-521.
[18] Zavadskas, E.K., Mardani, A., Turskis, Z., Jusoh, A., Nor, K.M. (2016) Development of TOPSIS method to solve complicated decision-making problems: An overview on developments from 2000 to 2015. International Journal of Information Technology & Decision Making, 15, 645-682.
[19] Brans JP., Mareschal B. (2005). Promethee Methods. In: Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol 78, pp 163-186. Springer, New York, NY. https://doi.org/10.1007/0-387-23081-5_5.
[20] Brans, J., Ph. Vincke. (1985). A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Management Science, 31(6), 647-656.
[21] Brans, J.P., Macharis, C., Kunsch, P.L., Chevalier, A., Schwaninger, M., (1998). Combining multicriteria decision aid and system dynamics for the control of socio-economic processes. An iterative real-time procedure. European Journal of Operational Research 109, 428-441.
[22] Brans, J.P., Vincke, Ph., Mareschal, B., (1986). How to select and how to rank projects: the PROMETHEE method. European Journal of Operational Research, 24, 228-238.
[23] Roy, B. (1991). The outranking approach and the foundation of ELECTRE methods. Theory and Decision, 31(1), 49–73.
[24] Fei, L., Xia, J., Feng, Y., Liu, L. (2019) An ELECTRE-Based Multiple Criteria Decision Making Method for Supplier Selection Using Dempster-Shafer Theory. IEEE Access, 7, 84701-84716.
[25] Zadeh L.A., (1965). Fuzzy Sets. Information and Control, 8, 338-353.
[26] Bellman, R.E., Zadeh, L.A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), 141–164.
[27] Modarres, M., Sadi-Nezhad, S. (2005). Fuzzy simple additive weighting method by preference ratio, Intelligent Automation and Soft Computing, 235-244.
[28] Kaur, P., Kumar, S. (2013). An Intuitionistic Fuzzy Simple Additive Weighting Method for selection of vendor. ISOR Journal Business and Management, 78-81.
[29] Sagar, M.K., Jayaswal, P., Kushwah, K. (2013). Exploring Fuzzy SAW Method for Maintenance strategy selection problem of Material Handling Equipment, (2013), ISSN 22 77 – 4106.
[30] Wang,Y.J. (2015). A fuzzy multi-criteria decision making model based on additive weighting method and preference relation, Applied Soft Computing, 30,412-420.
[31] Roszkowska, E., Kacprzak, D. (2016). The fuzzy saw and fuzzy TOPSIS procedures based on ordered fuzzy numbers. Inf. Sci., 369, 564-584.
[32] Atanassov K. (1986). Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, Vol. 20(1), 87-96.
[33] Smarandache, F. (2019). Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set, Spherical Fuzzy Set, and q-Rung Orthopair Fuzzy Set, while Neutrosophication is a Generalization of Regret Theory, Grey System Theory, and Three-Ways Decision (revisited) . Journal of New Theory, (29), 1-31.
[34] Smarandache, F. (2018). Plithogenic Set, an Extension of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Sets - Revisited. Neutrosophic Sets and Systems: 21 / 2018 pp. 153-166.
[35] Zhang, L., Xu, X., Tao, L. (2013) Some Similarity Measures for Triangular Fuzzy Number and Their Applications in Multiple Criteria Group Decision-Making, Journal of Applied Mathematics, vol. 2013, Article ID 538261, 1-7 pages, 2013.
[36] Ardil, C. (2019). Fighter Aircraft Selection Using Technique for Order Preference by Similarity to Ideal Solution with Multiple Criteria Decision Making Analysis. International Journal of Transport and Vehicle Engineering, 13(10), 649 - 657.
[37] Ardil, C. , Pashaev, A. , Sadiqov, R. , Abdullayev, P. (2019). Multiple Criteria Decision Making Analysis for Selecting and Evaluating Fighter Aircraft. International Journal of Transport and Vehicle Engineering, 13(11), 683 - 694.
[38] Ardil, C. (2019). Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques. International Journal of Industrial and Systems Engineering, 13(12), 744 - 756.
[39] Ardil, C. (2019). Military Fighter Aircraft Selection Using Multiplicative Multiple Criteria Decision Making Analysis Method. International Journal of Mathematical and Computational Sciences, 13(9), 184 - 193.
[40] Ardil, C. (2021). Neutrosophic Multiple Criteria Decision Making Analysis Method for Selecting Stealth Fighter Aircraft. International Journal of Aerospace and Mechanical Engineering, 15(10), 459 - 463.