Search results for: Concrete matrix
1507 Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns
Authors: Mehmet Alpaslan Köroğlu, Musa Hakan Arslan, Muslu Kazım Körez
Abstract:
Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as crosssection properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.
Keywords: Columns, plastic hinge length, regression analysis, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42701506 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics
Authors: Mahdi Nouri
Abstract:
In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.
Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051505 Some New Upper Bounds for the Spectral Radius of Iterative Matrices
Authors: Guangbin Wang, Xue Li, Fuping Tan
Abstract:
In this paper, we present some new upper bounds for the spectral radius of iterative matrices based on the concept of doubly α diagonally dominant matrix. And subsequently, we give two examples to show that our results are better than the earlier ones.Keywords: doubly α diagonally dominant matrix, eigenvalue, iterative matrix, spectral radius, upper bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13381504 Convergence Analysis of the Generalized Alternating Two-Stage Method
Authors: Guangbin Wang, Liangliang Li, Fuping Tan
Abstract:
In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.
Keywords: Generalized alternating two-stage method, linear system, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12581503 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
When high strength reinforced concrete is exposed to high temperature due to a fire, deteriorations occur such as loss in strength and elastic modulus, cracking and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. From four-point loading test, results show that maximum loads of the rehabilitated beams are similar to or higher than those of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. The parameters are the fire cover thickness and strengths of repairing mortar. Analytical results show good rehabilitation effects, when the results predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric cement mortar. The predictions from the finite element (FE) models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: Fire, High strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23731502 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.
Keywords: Concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, direct tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20731501 An Effective Approach for Distribution System Power Flow Solution
Authors: A. Alsaadi, B. Gholami
Abstract:
An effective approach for unbalanced three-phase distribution power flow solutions is proposed in this paper. The special topological characteristics of distribution networks have been fully utilized to make the direct solution possible. Two matrices–the bus-injection to branch-current matrix and the branch-current to busvoltage matrix– and a simple matrix multiplication are used to obtain power flow solutions. Due to the distinctive solution techniques of the proposed method, the time-consuming LU decomposition and forward/backward substitution of the Jacobian matrix or admittance matrix required in the traditional power flow methods are no longer necessary. Therefore, the proposed method is robust and time-efficient. Test results demonstrate the validity of the proposed method. The proposed method shows great potential to be used in distribution automation applications.Keywords: Distribution power flow, distribution automation system, radial network, unbalanced networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42381500 Iterative Solutions to Some Linear Matrix Equations
Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan
Abstract:
In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.
Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18551499 Studies on the Blended Concrete Prepared with Tannery Effluent
Authors: K. Nirmalkumar
Abstract:
There is a acute water problem especially in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the waste water from tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength etc were studied by casting various concrete specimens in form of cube, cylinders and beams etc and were found to be satisfactory. Hence some special properties such as chloride attack, sulphate attack and chemical attack are considered and comparatively studied with the conventional potable water. In this experimental study the results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory.Keywords: Calcium nitrite, concrete, fly ash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931498 A Matrix Evaluation Model for Sustainability Assessment of Manufacturing Technologies
Authors: Q. Z. Yang, B. H. Chua, B. Song
Abstract:
Technology assessment is a vital part of decision process in manufacturing, particularly for decisions on selection of new sustainable manufacturing processes. To assess these processes, a matrix approach is introduced and sustainability assessment models are developed. Case studies show that the matrix-based approach provides a flexible and practical way for sustainability evaluation of new manufacturing technologies such as those used in surface coating. The technology assessment of coating processes reveals that compared with powder coating, the sol-gel coating can deliver better technical, economical and environmental sustainability with respect to the selected sustainability evaluation criteria for a decorative coating application of car wheels.
Keywords: Evaluation matrix, sustainable manufacturing, surface coating, technology assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26311497 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams
Authors: Saruhan Kartal, Ilker Kalkan
Abstract:
The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.
Keywords: Cracking moment, four-point bending, hybrid use of reinforcement, polymer reinforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8111496 Evaluation of the Accuracy of Time of Arrival Source Location Algorithm of Acoustic Emission in Concrete-Mortar Structure
Authors: Hisham A. Elfergani, Ayad A. Abdalla, Ahmed R. Ballil
Abstract:
Acoustic Emission (AE) is one of the most effective non-destructive tests that can be used to detect the defect process as it is occurring. AE techniques can be used to monitor a wide range of structures and materials such as metals, non-metals and combinations of these when load is applied. The current work investigates the effectiveness and accuracy of TOA method in AE tests involving reinforced composite concrete-mortar structures. A series of experimental tests were performed using the Hsu-Neilson (H-N) source to study 2-D location accuracy using this method on concrete-mortar (400×400 mm) specimens. Four AE sensors (R3I – resonant frequency 30 kHz) were mounted to the mortar surface and six sources were performed at each point of preselected locations on the upper surface of the mortar. Results show that the TOA method can be used effectively to locate signals on composite concrete/mortar specimen and has high accuracy.
Keywords: Acoustic emission, time of arrival, composite materials, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6351495 Frequency Transformation with Pascal Matrix Equations
Authors: Phuoc Si Nguyen
Abstract:
Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.Keywords: Frequency transformation, Bilinear z-transformation, Pre-warping frequency, Digital filters, Analog filters, Pascal’s triangle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19141494 Dimensionality Reduction of PSSM Matrix and its Influence on Secondary Structure and Relative Solvent Accessibility Predictions
Authors: Rafał Adamczak
Abstract:
State-of-the-art methods for secondary structure (Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility (Sable, ACCpro) predictions use evolutionary profiles represented by the position specific scoring matrix (PSSM). It has been demonstrated that evolutionary profiles are the most important features in the feature space for these predictions. Unfortunately applying PSSM matrix leads to high dimensional feature spaces that may create problems with parameter optimization and generalization. Several recently published suggested that applying feature extraction for the PSSM matrix may result in improvements in secondary structure predictions. However, none of the top performing methods considered here utilizes dimensionality reduction to improve generalization. In the present study, we used simple and fast methods for features selection (t-statistics, information gain) that allow us to decrease the dimensionality of PSSM matrix by 75% and improve generalization in the case of secondary structure prediction compared to the Sable server.
Keywords: Secondary structure prediction, feature selection, position specific scoring matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19351493 Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach
Authors: A. Kahil, A. Nekmouche, N. Khelil, I. Hamadou, M. Hamizi, Ne. Hannachi
Abstract:
The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.
Keywords: Reinforced concrete, nonlinear calculation, behavior laws, fiber model confinement, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6771492 Rehabilitation of Reinforced Concrete Columns
Authors: Madi Rafik, Guenfoud Mohamed
Abstract:
In recent years, rehabilitation has been the subject of extensive research due to increased spending on building work and repair of built works. In all cases, it is absolutely essential to carry out methods of strengthening or repair of structural elements, and that following an inspection analysis and methodology of a correct diagnosis. The reinforced concrete columns are important elements in building structures. They support the vertical loads and provide bracing against the horizontal loads. This research about the behavior of reinforced concrete rectangular columns, rehabilitated by concrete liner, confinement FRP fabric, steel liner or cage formed by metal corners. It allows comparing the contributions of different processes used perspective section resistance elements rehabilitated compared to that is not reinforced or repaired. The different results obtained revealed a considerable gain in bearing capacity failure of reinforced sections cladding concrete, metal bracket, steel plates and a slight improvement to the section reinforced with fabric FRP. The use of FRP does not affect the weight of the structures, but the use of different techniques cladding increases the weight of elements rehabilitated and therefore the weight of the building which requires resizing foundations.
Keywords: cladding, Rehabilitation, reinforced concrete columns, confinement, composite materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36821491 Using Tabu Search to Analyze the Mauritian Economic Sectors
Authors: J. Cheeneebash, V. Beeharry, A. Gopaul
Abstract:
The aim of this paper is to express the input-output matrix as a linear ordering problem which is classified as an NP-hard problem. We then use a Tabu search algorithm to find the best permutation among sectors in the input-output matrix that will give an optimal solution. This optimal permutation can be useful in designing policies and strategies for economists and government in their goal of maximizing the gross domestic product.Keywords: Input-Output matrix, linear ordering problem, Tabusearch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921490 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing
Authors: R. Yeghnem, L. Boulefrakh, S. A. Meftah, A. Tounsi, E. A. Adda Bedia
Abstract:
In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed Finite Element Method (FEM). The anisotropic damage model is adopted to describe the damage extent of the Reinforced Concrete shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non-uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711489 Earthquake Analysis of Reinforce Concrete Framed Structures with Added Viscous Dampers
Authors: F. Hejazi, J. Noorzaei, M. S. Jaafar, A. A. Abang Abdullah
Abstract:
This paper describes the development of a numerical finite element algorithm used for the analysis of reinforced concrete structure equipped with shakes energy absorbing device subjected to earthquake excitation. For this purpose a finite element program code for analysis of reinforced concrete frame buildings is developed. The performance of developed program code is evaluated by analyzing of a reinforced concrete frame buildings model. The results are show that using damper device as seismic energy dissipation system effectively can reduce the structural response of framed structure during earthquake occurrence.
Keywords: Viscous Damper, finite element, program coding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981488 Numerical Study on the Response of Reinforced Concrete Wall Resisting the Impact Loading
Authors: DucKien Thai, Seung EockKim
Abstract:
A numerical analysis of a reinforced concrete (RC) wall under missile impact loading is presented in this study. The model created by Technical Research Center of Finland was used. The commercial finite element code, LS-DYNA was used to analyze. The structural components of the reinforced concrete wall, missile and their contacts are fully modeled. The material nonlinearity with strain rate effects considering damage and failure is included in the analysis. The results of analysis were verified with other research results. The case-studies with different reinforcement ratios were conducted to investigate the influence of reinforcement on the punching behavior of walls under missile impact.
Keywords: Missile Impact, Reinforced Concrete Walls, LSDYNA, Dynamic Analysis, Punching Behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25551487 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model
Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You
Abstract:
The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.Keywords: Clustering algorithm, potential function, speech signal, the UBSS model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6781486 Matrix-Interleaved Serially Concatenated Block Codes for Speech Transmission in Fixed Wireless Communication Systems
Authors: F. Mehran
Abstract:
In this paper, we study a class of serially concatenated block codes (SCBC) based on matrix interleavers, to be employed in fixed wireless communication systems. The performances of SCBC¬coded systems are investigated under various interleaver dimensions. Numerical results reveal that the matrix interleaver could be a competitive candidate over conventional block interleaver for frame lengths of 200 bits; hence, the SCBC coding based on matrix interleaver is a promising technique to be employed for speech transmission applications in many international standards such as pan-European Global System for Mobile communications (GSM), Digital Cellular Systems (DCS) 1800, and Joint Detection Code Division Multiple Access (JD-CDMA) mobile radio systems, where the speech frame contains around 200 bits.
Keywords: Matrix Interleaver, serial concatenated block codes (SCBC), turbo codes, wireless communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381485 A Study for Carbonation Degree on Concrete using a Phenolphthalein Indicator and Fourier-Transform Infrared Spectroscopy
Authors: Ho Jae Lee, Do Gyeum Kim, Jang Hwa Lee, Myoung Suk Cho
Abstract:
A concrete structure is designed and constructed for its purpose of use, and is expected to maintain its function for the target durable years from when it was planned. Nevertheless, as time elapses the structure gradually deteriorates and then eventually degrades to the point where the structure cannot exert the function for which it was planned. The performance of concrete that is able to maintain the level of the performance required over the designed period of use as it has less deterioration caused by the elapse of time under the designed condition is referred to as Durability. There are a number of causes of durability degradation, but especially chloride damage, carbonation, freeze-thaw, etc are the main causes. In this study, carbonation, one of the main causes of deterioration of the durability of a concrete structure, was investigated via a microstructure analysis technique. The method for the measurement of carbonation was studied using the existing indicator method, and the method of measuring the progress of carbonation in a quantitative manner was simultaneously studied using a FT-IR (Fourier-Transform Infrared) Spectrometer along with the microstructure analysis technique.Keywords: Concrete, Carbonation, Microsturcture, FT-IR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46421484 Effect of Local Steel Slag as a Coarse Aggregate on Properties of Fly Ash Based-Geopolymer Concrete
Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien
Abstract:
Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitutes of crashed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of crashed stone. This paper reports the experimental study to investigate the influence of a hundred replacement of crashed stone as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless, the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.Keywords: Geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22501483 Principle Components Updates via Matrix Perturbations
Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook
Abstract:
This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X ∈ R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.Keywords: Online data updates, covariance matrix, online principle component analysis (OPCA), matrix perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10371482 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19911481 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas
Authors: Michel Soto Chalhoub
Abstract:
Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.
Keywords: Seismic behavior, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27401480 Improved Asymptotic Stability Analysis for Lure Systems with Neutral Type and Time-varying Delays
Authors: Changchun Shen, Shouming Zhong
Abstract:
This paper investigates the problem of absolute stability and robust stability of a class of Lur-e systems with neutral type and time-varying delays. By using Lyapunov direct method and linear matrix inequality technique, new delay-dependent stability criteria are obtained and formulated in terms of linear matrix inequalities (LMIs) which are easy to check the stability of the considered systems. To obtain less conservative stability conditions, an operator is defined to construct the Lyapunov functional. Also, the free weighting matrices approach combining a matrix inequality technique is used to reduce the entailed conservativeness. Numerical examples are given to indicate significant improvements over some existing results.
Keywords: Lur'e system, linear matrix inequalities, Lyapunov, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901479 Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis
Authors: Holger Keitel
Abstract:
The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.
Keywords: Concrete creep models, time-integration methods, sensitivity analysis, prediction uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371478 Some Characteristics of Systolic Arrays
Authors: Halil Snopce, Ilir Spahiu
Abstract:
In this paper is investigated a possible optimization of some linear algebra problems which can be solved by parallel processing using the special arrays called systolic arrays. In this paper are used some special types of transformations for the designing of these arrays. We show the characteristics of these arrays. The main focus is on discussing the advantages of these arrays in parallel computation of matrix product, with special approach to the designing of systolic array for matrix multiplication. Multiplication of large matrices requires a lot of computational time and its complexity is O(n3 ). There are developed many algorithms (both sequential and parallel) with the purpose of minimizing the time of calculations. Systolic arrays are good suited for this purpose. In this paper we show that using an appropriate transformation implicates in finding more optimal arrays for doing the calculations of this type.Keywords: Data dependences, matrix multiplication, systolicarray, transformation matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520