Search results for: Association language features
2385 Application of the Virtual Reality Modeling Language for Design of Automated Workplaces
Authors: Jozef Novak-Marcincin
Abstract:
Virtual Reality Modelling Language (VRML) is description language, which belongs to a field Window on World virtual reality system. The file, which is in VRML format, can be interpreted by VRML explorer in three-dimensional scene. VRML was created with aim to represent virtual reality on Internet easier. Development of 3D graphic is connected with Silicon Graphic Corporation. VRML 2.0 is the file format for describing interactive 3D scenes and objects. It can be used in collaboration with www, can be used for 3D complex representations creating of scenes, products or VR applications VRML 2.0 enables represent static and animated objects too. Interesting application of VRML is in area of manufacturing systems presentation.
Keywords: Virtual reality, virtual reality modelling language, design of workplaces, technological workplaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18642384 CoSP2P: A Component-Based Service Model for Peer-to-Peer Systems
Authors: Candido Alcaide, Manuel Dıaz, Luis Llopis, Antonio Marquez, Bartolome Rubio, Enrique Soler
Abstract:
The increasing complexity of software development based on peer to peer networks makes necessary the creation of new frameworks in order to simplify the developer-s task. Additionally, some applications, e.g. fire detection or security alarms may require real-time constraints and the high level definition of these features eases the application development. In this paper, a service model based on a component model with real-time features is proposed. The high-level model will abstract developers from implementation tasks, such as discovery, communication, security or real-time requirements. The model is oriented to deploy services on small mobile devices, such as sensors, mobile phones and PDAs, where the computation is light-weight. Services can be composed among them by means of the port concept to form complex ad-hoc systems and their implementation is carried out using a component language called UM-RTCOM. In order to apply our proposals a fire detection application is described.
Keywords: Peer-to-peer, mobile systems, real-time, service-oriented architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16872383 A Knowledge Engineering Workshop: Application for Choise Car
Authors: Touahria Mohamed, Khababa Abdallah, Frécon Louis
Abstract:
This paper proposes a declarative language for knowledge representation (Ibn Rochd), and its environment of exploitation (DeGSE). This DeGSE system was designed and developed to facilitate Ibn Rochd writing applications. The system was tested on several knowledge bases by ascending complexity, culminating in a system for recognition of a plant or a tree, and advisors to purchase a car, for pedagogical and academic guidance, or for bank savings and credit. Finally, the limits of the language and research perspectives are stated.Keywords: Knowledge representation, declarative language, IbnRochd, DeGSE, facets, cognitive approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13302382 Transliterating Methods of the Kazakh Onyms in the Arabic Language
Authors: K. A. Kydyrbayev, B.N. Zhubatova, G.E. Nadirova, A.A. Mustafayeva
Abstract:
Transliteration is frequently used especially in writing geographic denominations, personal names (onyms) etc. Proper names (onyms) of all languages must sound similarly in translated works as well as in scientific projects and works written in mother tongue, because we can get introduced with the nation, its history, culture, traditions and other spiritual values through the onyms of that nation. Therefore it is necessary to systematize the different transliterations of onyms of foreign languages. This paper is dedicated to the problem of making the project of transliterating Kazakh onyms into Arabic. In order to achieve this goal we use scientific or practical types of transliteration. Because in this type of transliteration provides easy reading writing source language's texts in the target language without any diacritical symbols, it is limited by the target language's alphabetic system.
Keywords: The Arabic, Kazakh languages, onyms, transliterating
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15562381 Multi Language Text Editor for Burushaski and Urdu through Unicode
Authors: Irfan Qadir Baig, Muhammad Sharif, Aman Ullah Khan
Abstract:
This paper introduces an isolated and unique ancient language Burushaski, spoken in Hunza, Nagar, Yasin and parts of Gilgit in the Northern Areas of Pakistan. It explains the working mechanism of Multi Language Text Editor for Urdu and Burushaski. It is developed under the use of ISO/IEC 10646 Unicode standards for Urdu and Burushaski open-type fonts. It gives an ample opportunity to this regional ancient language to have a modern Information technology for its promotion and preservation. The main objective of this research paper is to help preserve the heritage of such rare languages and give smart way of automation. It also facilitates to those who are interested in undertaking research on Burushaski or keen to trace fonatic relationship between the national Urdu language and Burushaski. Since this editor covers both Burushaski and Urdu so it can play an important role to introduce Burusho linguistic culture to the world at large. Precisely, as a result of this research paper, Burushaski publication through IT means would be possible.Keywords: Burushaski, Bri Naqsh, Unicode, Burusho, Hunza, Meshaski.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21142380 2D Gabor Functions and FCMI Algorithm for Flaws Detection in Ultrasonic Images
Authors: Kechida Ahmed, Drai Redouane, Khelil Mohamed
Abstract:
In this paper we present a new approach to detecting a flaw in T.O.F.D (Time Of Flight Diffraction) type ultrasonic image based on texture features. Texture is one of the most important features used in recognizing patterns in an image. The paper describes texture features based on 2D Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial frequency range and multiple orientations, which represent an appropriate choice for tasks requiring simultaneous measurement in both space and frequency domains. The most relevant features are used as input data on a Fuzzy c-mean clustering classifier. The classes that exist are only two: 'defects' or 'no defects'. The proposed approach is tested on the T.O.F.D image achieved at the laboratory and on the industrial field.Keywords: 2D Gabor Functions, flaw detection, fuzzy c-mean clustering, non destructive testing, texture analysis, T.O.F.D Image (Time of Flight Diffraction).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17592379 Reviewing the Relation of Language and Minorities' Rights
Authors: Mohsen Davarzani, Ehsan Lame, Mohammad Taghi Hassan Zadeh
Abstract:
Language is considered as a powerful and outstanding feature of ethnicity. However, humiliating and prohibiting using human language is one the most heinous and brutal acts in the form of racism. In other words, racism can be a product of physiological humiliations and discrimination, such as skin color, and can also be resulted from ethnic humiliation and discrimination such as language, customs and so on. Ethnic and racial discrimination is one of the main problems of the world that minorities and occasionally the majority have suffered from. Nowadays, few states can be found in which all individuals and its citizens are of the same race and ethnicity, culture and language. In these countries, referred to as the multinational states, (eg, Iran, Switzerland, India, etc.), there are the communities and groups which have their own linguistic, cultural and historical characteristics. Characteristics of human rights issues, diversity of issues and plurality of meanings indicate that they appear in various aspects. The states are obliged to respect, as per national and international obligations, the rights of all citizens from different angles, especially different groups that require special attention in order of the particular aspects such as ethnicity, religious and political minorities, children, women, workers, unions and in case the states are in breach of any of these items, they are faced with challenges in local, regional or international fields.Keywords: Law, language, minorities, ethnicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7672378 A Multi-Agent Framework for Data Mining
Authors: Kamal Ali Albashiri, Khaled Ahmed Kadouh
Abstract:
A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios.Keywords: Multi-Agent Data Mining (MADM), Frequent Itemsets, Meta ARM, Association Rule Mining, Classifier generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20772377 Development of Sleep Quality Index Using Heart Rate
Authors: Dongjoo Kim, Chang-Sik Son, Won-Seok Kang
Abstract:
Adequate sleep affects various parts of one’s overall physical and mental life. As one of the methods in determining the appropriate amount of sleep, this research presents a heart rate based sleep quality index. In order to evaluate sleep quality using the heart rate, sleep data from 280 subjects taken over one month are used. Their sleep data are categorized by a three-part heart rate range. After categorizing, some features are extracted, and the statistical significances are verified for these features. The results show that some features of this sleep quality index model have statistical significance. Thus, this heart rate based sleep quality index may be a useful discriminator of sleep.Keywords: Sleep, sleep quality, heart rate, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15072376 A Fast Object Detection Method with Rotation Invariant Features
Authors: Zilong He, Yuesheng Zhu
Abstract:
Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.Keywords: gradient feature, online learning, rotationinvariance, template feature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24792375 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits
Authors: Ali Ganoun
Abstract:
This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.
Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15952374 A Network Traffic Prediction Algorithm Based On Data Mining Technique
Authors: D. Prangchumpol
Abstract:
This paper is a description approach to predict incoming and outgoing data rate in network system by using association rule discover, which is one of the data mining techniques. Information of incoming and outgoing data in each times and network bandwidth are network performance parameters, which needed to solve in the traffic problem. Since congestion and data loss are important network problems. The result of this technique can predicted future network traffic. In addition, this research is useful for network routing selection and network performance improvement.
Keywords: Traffic prediction, association rule, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36742373 Fusing Local Binary Patterns with Wavelet Features for Ethnicity Identification
Authors: S. Hma Salah, H. Du, N. Al-Jawad
Abstract:
Ethnicity identification of face images is of interest in many areas of application, but existing methods are few and limited. This paper presents a fusion scheme that uses block-based uniform local binary patterns and Haar wavelet transform to combine local and global features. In particular, the LL subband coefficients of the whole face are fused with the histograms of uniform local binary patterns from block partitions of the face. We applied the principal component analysis on the fused features and managed to reduce the dimensionality of the feature space from 536 down to around 15 without sacrificing too much accuracy. We have conducted a number of preliminary experiments using a collection of 746 subject face images. The test results show good accuracy and demonstrate the potential of fusing global and local features. The fusion approach is robust, making it easy to further improve the identification at both feature and score levels.
Keywords: Ethnicity identification, fusion, local binary patterns, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29932372 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema
Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy
Abstract:
Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.Keywords: Natural language processing, end user development; natural language interfaces, human computer interaction, data recognition, dialog systems, spreadsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11232371 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.
Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19212370 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16742369 Using PFA in Feature Analysis and Selection for H.264 Adaptation
Authors: Nora A. Naguib, Ahmed E. Hussein, Hesham A. Keshk, Mohamed I. El-Adawy
Abstract:
Classification of video sequences based on their contents is a vital process for adaptation techniques. It helps decide which adaptation technique best fits the resource reduction requested by the client. In this paper we used the principal feature analysis algorithm to select a reduced subset of video features. The main idea is to select only one feature from each class based on the similarities between the features within that class. Our results showed that using this feature reduction technique the source video features can be completely omitted from future classification of video sequences.
Keywords: Adaptation, feature selection, H.264, Principal Feature Analysis (PFA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16102368 Web Page Watermarking: XML files using Synonyms and Acronyms
Authors: Nighat Mir, Sayed Afaq Hussain
Abstract:
Advent enhancements in the field of computing have increased massive use of web based electronic documents. Current Copyright protection laws are inadequate to prove the ownership for electronic documents and do not provide strong features against copying and manipulating information from the web. This has opened many channels for securing information and significant evolutions have been made in the area of information security. Digital Watermarking has developed into a very dynamic area of research and has addressed challenging issues for digital content. Watermarking can be visible (logos or signatures) and invisible (encoding and decoding). Many visible watermarking techniques have been studied for text documents but there are very few for web based text. XML files are used to trade information on the internet and contain important information. In this paper, two invisible watermarking techniques using Synonyms and Acronyms are proposed for XML files to prove the intellectual ownership and to achieve the security. Analysis is made for different attacks and amount of capacity to be embedded in the XML file is also noticed. A comparative analysis for capacity is also made for both methods. The system has been implemented using C# language and all tests are made practically to get the results.Keywords: Watermarking, Extensible Markup Language (XML), Synonyms, Acronyms, Copyright protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22852367 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.
Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22812366 Mining Educational Data to Analyze the Student Motivation Behavior
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30982365 Internationalization and Multilingualism in Brazil: Possibilities of Content and Language Integrated Learning and Intercomprehension Approaches
Authors: Kyria Rebeca Finardi
Abstract:
The study discusses the role of foreign languages in general and of English in particular in the process of internationalization of higher education (IHE), defined as the intentional integration of an international, intercultural or global dimension in the purpose, function or offer of higher education. The study is bibliographical and offers a brief outline of the current political, economic and educational scenarios in Brazil, before discussing some possibilities and challenges for the development of multilingualism and IHE there. The theoretical background includes a review of Brazilian language and internationalization policies. The review and discussion concludes that the use of the Content and Language Integrated Learning (CLIL) approach and the Intercomprehension approach to foreign language teaching/learning are relevant alternatives to foster multilingualism in that context.
Keywords: Brazil, higher education, internationalization, multilingualism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8092364 Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).
Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17212363 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation
Authors: Ferenc Peter Pach, Janos Abonyi
Abstract:
This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23092362 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.
Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10842361 The Association between C-Reactive Protein and Hypertension of Different United States Participants Categorized by Ethnicity: Applying the National Health and Nutrition Examination Survey from 1999-2010
Authors: Ghada Abo-Zaid
Abstract:
Objectives: The main objective of this study was to examine the association between the elevated level of C-reactive protein (CRP) and incidence of hypertension before and after adjustments for age, BMI, gender, SES, smoking, diabetes, cholesterol LDL and cholesterol HDL, and to determine whether the association differs by race. Method: Cross sectional data for participants from aged 17 years to 74 years, included in The National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010 were analyzed. The CRP level was classified into three categories (> 3 mg/L, between 1 mg/L and 3 mg/L, and < 3 mg/L). Blood pressure categorization was done using JNC 7 indicator. Hypertension is defined as either systolic blood pressure (SBP) of 140 mmHg or more and diastolic blood pressure (DBP) of 90 mmHg or more, otherwise a self-reported prior diagnosis by a physician. Pre-hypertension was defined as 139 ≥ SBP > 120 or 89 ≥ DBP >80. Multinominal regression model was undertaken to measure the association between CRP level and hypertension. Results: In univariable models, CRP concentrations > 3 mg/L were associated with a 73% greater risk of incident hypertension compared with CRP concentrations < 1 mg/L (Hypertension: odds ratio [OR] = 1.73; 95% confidence interval [CI], 1.50-1.99). Ethnic comparisons showed that American Mexicans had the highest risk of incident hypertension (OR = 2.39; 95% CI, 2.21-2.58). This risk was statistically insignificant after controlling by other variables (Hypertension: OR = 0.75; 95% CI, 0.52-1.08), or categorized by race [American Mexican: OR= 1.58; 95% CI, 0.58-4.26, Other Hispanic: OR = 0.87; 95% CI, 0.19-4.42, Non-Hispanic white: OR = 0.90; 95% CI, 0.50-1.59, Non-Hispanic Black: OR = 0.44; 95% CI, 0.22-0.87. The same results were found for pre-hypertension, and the Non-Hispanic black segment showed the highest significant risk for Pre-Hypertension (OR = 1.60; 95% CI, 1.26-2.03). When CRP concentrations were between 1.0 and 3.0 mg/L in unadjusted models, prehypertension was associated with higher likelihood of elevated CRP (OR = 1.37; 95% CI, 1.15-1.62). The same relationship was maintained in Non-Hispanic white, Non-Hispanic black, and other race (Non-Hispanic white: OR = 1.24; 95% CI, 1.03-1.48, Non-Hispanic black: OR = 1.60; 95% CI, 1.27-2.03, other race: OR = 2.50; 95% CI, 1.32-4.74) while the association was insignificant with American Mexican and other Hispanic. In the adjusted model, the relationship between CRP and prehypertension were no longer available. Contrary, hypertension was not independently associated with elevated CRP, and the results were the same after being grouped by race or adjustments for the possible confounder variables. The same results were obtained when SBP or DBP were on a continuous measure. Conclusions: This study confirmed the existence of an association between hypertension, prehypertension and elevated level of CRP, however this association was no longer available after adjusting by other variables. Ethic group differences were statistically significant at the univariable models, while it disappeared after controlling by other variables.Keywords: CRP, hypertension, ethnicity, NHANES, blood pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13622360 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features
Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova
Abstract:
The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.
Keywords: Emotion recognition, facial recognition, signal processing, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20252359 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification
Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine
Abstract:
Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15552358 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: Classification, data mining, evaluation measures, groundwater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26012357 Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application
Authors: Asma Rabaoui, Zied Lachiri, Noureddine Ellouze
Abstract:
Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.Keywords: Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16482356 SySRA: A System of a Continuous Speech Recognition in Arab Language
Authors: Samir Abdelhamid, Noureddine Bouguechal
Abstract:
We report in this paper the model adopted by our system of continuous speech recognition in Arab language SySRA and the results obtained until now. This system uses the database Arabdic-10 which is a corpus of word for the Arab language and which was manually segmented. Phonetic decoding is represented by an expert system where the knowledge base is translated in the form of production rules. This expert system transforms a vocal signal into a phonetic lattice. The higher level of the system takes care of the recognition of the lattice thus obtained by deferring it in the form of written sentences (orthographical Form). This level contains initially the lexical analyzer which is not other than the module of recognition. We subjected this analyzer to a set of spectrograms obtained by dictating a score of sentences in Arab language. The rate of recognition of these sentences is about 70% which is, to our knowledge, the best result for the recognition of the Arab language. The test set consists of twenty sentences from four speakers not having taken part in the training.Keywords: Continuous speech recognition, lexical analyzer, phonetic decoding, phonetic lattice, vocal signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392