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Abstract— This paper focuses on the data-driven generation
of fuzzy IF...THEN rules. The resulted fuzzy rule base can be
applied to build a classifier, a model used for prediction, or
it can be applied to form a decision support system. Among
the wide range of possible approaches, the decision tree and
the association rule based algorithms are overviewed, and two
new approaches are presented based on the a priori fuzzy
clustering based partitioning of the continuous input variables.
An application study is also presented, where the developed
methods are tested on the well known Wisconsin Breast Cancer
classification problem.

I. INTRODUCTION

Human logic can be represented well by logical expressions
in syntax of rules, with an antecedent and a consequent part.
A short example can be: If somebody has forgotten her/his
umbrella at home and it is pouring with rain then the chances
are that she/he will be flooding. The set of logical rules is
called rule base that is an easy and useful interpretation of the
knowledge of a given area. ”Various types of logical rules can
be discussed in the context of the decision borders these rules
create in multidimensional feature space. The standard crisp
propositional IF...THEN rules provide overlapping hyperrect-
angular covering areas, threshold logic rules are equivalent to
separating hyperplanes, while fuzzy rules based on real-valued
predicate functions” (come from the prolog to [52]).

Accordingly many rule based methods have been developed
for extraction knowledge from databases. The paper [40]
introduces a genetic programming (GP) and fuzzy logic based
algorithm that extracts explanatory rules from micro array
data. A hybrid approach is proposed in [7], where a standard
GP and a heuristic hierarchical crisp rule-base construction
are combined. A fuzzy mining algorithm based on Srikant and
Agrawals method [48] is proposed for extracting generalized
rules with the use of taxonomies [51]. In [34] compact fuzzy
rules extraction is based on adaptive data approximation using
B-splines.

Rule bases are efficiently used in many area but this paper
concentrates first of all to the prediction applications. Rule
bases are successfully applied for example in stock exchange
estimation [37], weather [32] or future sales forecasting [19].

The high prediction accuracy of the applied model (build
from the extracted rules) is very important but the model
understanding could be also very critical in many areas. It

is very useful to know what are in the background of the
decisions, while rules could be edited or changed by the
specialists of the application area. The compact and appre-
hensible predictive models via the visualization possibilities
could help better human decisions. The paper [52] shows many
computational intelligence techniques (based on decision trees,
neural networks, etc.) that very useful tools to rule extraction
and data understanding.

In developments of the new rule based methods for pre-
diction applications besides the retention and enhancement of
achieved accuracies (in the classification problems), the one
of the most important objects is to enlarge the interpretable
of the rules. To take this aspect into account the one of the
possible improvement ways is the adaptation of fuzzy logic.
Besides the fuzzy methods could represent the discovered rules
far natural for human, the fuzzy logic serves more robust
predictive models (classifiers) in case of false, inconsistent,
and missing data.

In this paper a fuzzy decision tree (Section II-B) and
a fuzzy association rule based method (Section III-B) are
introduced for fuzzy rule base generation. Our main goal
is to show how construct compact fuzzy rule bases which
can be used for data analysis, classification, or prediction.
Therefore prediction accuracy (for classification problems) and
understanding are together in focus during the rule extraction
steps in both algorithms. The classification effectiveness of the
proposed methods are tested on the Wisconsin Breast Cancer
problem. The results are summarized in a short application
study (Section IV).

II. FUZZY DECISION TREE BASED METHODS

A. Existent decision tree induction algorithms

Decision tree based methods are widely used in data mining
and decision support applications. Decision tree is fast and
easy to use for rule generation and classification problems,
moreover it is an excellent representation tool of decisions.
The popularity and the spread of decision tree are based on
the algorithm ID3 by Quinlan [46]. Many studies had been
written to induction and analysis of decision trees [54], [47],
[35], [36], [55]. The application areas of decision trees are
also very breadth [6], [45], [15], [50], [49], [38].
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Fig. 1. Fuzzy decision tree for Wisconsin Breast Cancer classification
problem

Since the 80’s years many fuzzy decision tree induction
algorithm have been introduced [2], [42], [39]. Fuzzy decision
trees represent the discovered rules far natural for human (for
example thanks to the linguistic variables). The [22] takes
a detailed introduction about the non fuzzy rules and the
different kind of fuzzy rules.

The Figure 1 shows an example fuzzy decision tree for
a classification problem. The aim of the classification is to
distinguish between benign and malignant cancers based on
the available attributes. The example tree uses only three
attributes (three decision points: bare nuclei, cell size and cell
shape) and represents three rules (the pathes from root to the
letters) to the decision.

In classification problems the continuous attributes in the
input domain need partitioning. For example in Figure 1 the
attribute cell size is partitioned into two overlapped partitions
(two fuzzy sets) small and large. Many type of membership
functions can be used (triangular, trapezoids, Gaussian, etc.)
for partitions. While the papers in the literature discuss various
methods, this paper focuses only the a priori partition based
fuzzy decision tree induction algorithms. At the a priori based
methods, the partition step is ahead the tree induction step.
A new a priori partition and decision tree based extraction
method is showed in the next subsection.

B. A fuzzy decision tree based method

Our method (Figure 2, on the left) consists the following
main steps:

1) A supervised clustering algorithm is used for input
domain partition. The supervised method takes into
account the class labels during the clustering. Therefore
the resulted partitions, the fuzzy membership functions
(fuzzy sets) represent not only the distribution of data,
but the distribution of the classes too.

2) During a pre-pruning method the resulted partitions
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Fig. 2. Main steps of the decision tree (left) and the association rule (right)
based methods

could be analyze and combine the unduly overlapped
fuzzy sets.

3) The results of the pre-pruning step are input parameters
(beside data) for the tree induction algorithm. The ap-
plied tree induction method is the FID (Fuzzy Induction
on Decision Tree) algorithm by C. Z. Janikow [35].

4) The resulted decision tree is analyzed and transformed
by a proper method into a fuzzy rule base.

5) While the FID algorithm could generate more large and
complex decision tree as it is necessary, therefore a post-
pruning method is applied to filter the unnecessary long
rules and erase the weak (in classification point of view)
rules from the fuzzy rule base.

This method provides compact and transparent fuzzy rule
base which can be use to build accurate fuzzy classifiers.

III. FUZZY ASSOCIATION RULE BASED METHODS

A. Existent association rule mining and associative classifier
algorithms

Besides the decision tree based techniques the association
rule mining algorithms are the most frequently used data
mining tools in rule extraction. Many kinds of methods are
developed [3], [5], [4], [16], [18], [8], [12], [13], [14], [9],
[11], [21], [17], [20] but two main steps are common in most
of them. The mining starts with frequent item set searching (it
is defined first in paper [3]) then association rules are generated
from the large item sets. The selection of an appropriate
algorithm depends on the structure (sparse, dense) and the
size of the analyzed database. Additionally the application
area influences also notable the suitable methods. The first
association rule mining algorithms primarily developed to
discover the customer habits in the market basket analysis
[5]. See an example transactional database in Table I. All the
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T Products
1 milk, bread, beer, egg
2 bread, diaper, egg, beer
3 milk, bread
4 milk, diaper, wine, beer
5 milk, bread, diaper, beer

TABLE I
EXAMPLE TRANSACTIONAL DATABASE

rows have a transaction identity number (T) and each rows
contain products buy together in the transaction. The aim is to
understand the behavior of retail customers, or in other words,
finding associations among the items purchased together. The
products are called items and the item sets are the sets of the
products. An item (item set) is called frequent item (item set) if
it has higher support (the number of the occurences in database
the number of it is purchased) as the predefined minimum
support threshold. For example if the minimal support is set
to fifty percentage, the item set <diapers, beer> is a frequent
item set. A famous example of an association rule in such a
database is ”diapers => beer”, i.e. young fathers being sent off
to the store to buy diapers, reward themselves for their trouble.
An association rule have a confidence measure that represents
the strength of the relationship between the antecedent and
consequent parts of the rule. An association rule is called valid
rule if and only if the support and confident values are higher
than the support and confidence thresholds.

Besides the possibility of the rule based analysis of the
transactional databases, classifiers can also built from the set of
discovered association rules. The CBA algorithm [43] was the
first which integrates efficient the association and classification
rule mining techniques. In last decade many associative classi-
fier algorithms are presented [23], [44], [53], [41], [57], [56],
[58], [10], [59], [30]. The methods give rule bases with higher
and higher classification power, but the most of them generate
too large and complex classifiers. How it has been already
accentuated in Section I and Section II too complex rule bases
are undesirable in aspect of the interpretability. Therefore our
main goal was to construct an associative method which serves
compact fuzzy rule bases from data which is applicable to
build accurate fuzzy classifiers. The next subsection introduces
our new fuzzy association rule based method.

B. A fuzzy association rule based method

Our method (Figure 2, on the right) has the following main
steps:

1) In the first step a partitioning method is need to get
discrete data elements on continuous attributes. The
applied method is a fuzzy clustering algorithm to deter-
mine trapezoidal fuzzy membership functions for each
attributes.

2) While the membership functions as fuzzy sets are
counted for fuzzy items, the frequent item sets are
searched on easy way. The membership values deter-
mines the supports of the items. The searching of the

200
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Fig. 3. Class distribution of Wisconsin Breast Cancer Data

larger item sets is based on the Apriori-principle [5].
3) While our main application goal is the classifier model

identification, association rules with class label in the
consequent part must be generated from the frequent
item sets.

4) The classification rules determine most the results of
prediction are selected by a correlation measure. These
rules are called important rules. Only the positive corre-
lated, above the average rules are stored in the rule base.
The proposed method efficiently works without database
coverage analysis (which demands high computational
capacity).

5) The unnecessary complex, redundant and conflict rules
are searched during a post-pruning method. The selected
rules are removed from the rule base therefore only the
most important and most confidential rules could be use
for fuzzy associative classifiers.

The earlier versions of both presented methods are detailed
in our publications [29], [24], [25], [27], [26], [28]. Our actual
results are encouraging, the classification power and complex-
ity reduction of the presented methods are demonstrated with
a short application study in the following section.

IV. APPLICATION STUDY

If only classification rules is generated by the proposed
methods, the rule bases and the input partitions serve clas-
sification models. This section shows an empirical analysis of
the classification power of the proposed algorithms.

The Wisconsin Breast Cancer data (WBCD) is available
from the University of California, Irvine (UCI Repository,
http://www.ics.uci.edu/ mlearn/MLRepository.html), is a real
classification problem. The aim of the classification is to
distinguish between benign and malignant cancers based on
the available nine measurements: clump thickness, uniformity
of cell size, uniformity of cell shape, marginal adhesion,
single epithelial cell size, bare nuclei, bland chromatin, normal
nuclei, and mitosis. The attributes have integer value in the
range [1;10]. The original database contains 699 instances
however 16 of these are omitted because these are incomplete,
which is common with other studies. The class distribution
(Figure 3) is 65.5 benign and 34.5 malignant, respectively.
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Fig. 4. Partitions (fuzzy trapezoidal membership functions) determined
by supervised Gath-Geva clustering algorithm for Wisconsin classification
problem)

A. Classification by the fuzzy decision tree based method

First see the results of our decision tree based algorithm.
The selected a priori partition method was the supervised
Gath-Geva clustering algorithm [31], [1]. The number of
the initial number of the partitions for all attributes were
equal with the number of classes, two. The resulted partitions
are represented in Figure 4. The classification accuracy is
measured by ten-fold cross validation. If the post-pruning
factor is set to 1.6 (in the fifth step of our algorithm), the
average accuracy is 95.27% with 3.2 rules (number of the
conditions: 6.8). An example rule base contains three fuzzy
rules is the following:

• If uniformity of cell size is small and bare nuclei is
small Then benign.

• If uniformity of cell size is large and uniformity of cell
shape is large and bare nuclei is small Then malignant.

• If bare nuclei is large Then malignant.
The decision tree contains the rule base is represented in
Figure 1. It is a very compact, interpretable, but accurate fuzzy
classification rule base for the Wisconsin problem.

B. Classification by the fuzzy association rule based method

First in the association rule based methods an implemen-
tation of the Gustafson-Kessel (GK) clustering algorithm is
applied to partition the input attributes [33]. As it was in case
of the decision tree based method, the number of the partitions
for all attributes were two. The average (by ten-fold cross
validation) classification accuracy is 95.85%. A visualization
tool is also developed to represent the resulted fuzzy rule
base structure. The Figure 5 represents an example rule base
contains ten rules with 22.7 conditions. If the GK algorithm
is changed with the easiest technique the Ruspini-type fuzzy
partition method, more accurate (96%) and smaller (average
8.8 rules), but more complex (average 36.8 conditions) classi-
fier is resulted. An example rule base is depicted in Figure 6.

Some rules are contained in both rule bases of methods but
the figures represents that the associative method serves larger
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Fig. 5. Fuzzy rule base for Wisconsin Breast Cancer classification problem (is
generated by the association based method with Gustafson-Kessel clustering
algorithm as partition technique)
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Fig. 6. Fuzzy rule base for Wisconsin Breast Cancer classification problem
(is generated by the association based method with Ruspini-type partition
technique)

rule bases (in both partition techniques) as the decision tree
based algorithm. In Figure 5 the fifth rule is equal with the
third rule in the tree (If bare nuclei is large Then malignant).
But rule base of the decision tree includes more compact the
important knowledge to classification. See for example the
rules number eight and nine together appear in the second
rule of the tree.
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V. CONCLUSIONS

This paper gave a short overview of the existent decision
tree and association rule mining based rule extraction methods
focused to build a fuzzy classifier system. Beside the literature
review, two new rule extraction methods have been presented
to generate compact and accurate fuzzy rule base classifiers.
The results show the similarities of the two approaches, and
highlight that the partitioning of the input variables plays an
important role to the performance of the resulted classifiers.
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