
CoSP2P: A Component-Based Service Model for
Peer-to-Peer Systems

Cándido Alcaide, Manuel Dı́az, Luis Llopis, Antonio Márquez, Bartolomé Rubio and Enrique Soler

Abstract— The increasing complexity of software development
based on peer to peer networks makes necessary the creation of new
frameworks in order to simplify the developer’s task. Additionally,
some applications, e.g. fire detection or security alarms may require
real-time constraints and the high level definition of these features
eases the application development. In this paper, a service model
based on a component model with real-time features is proposed. The
high-level model will abstract developers from implementation tasks,
such as discovery, communication, security or real-time requirements.
The model is oriented to deploy services on small mobile devices,
such as sensors, mobile phones and PDAs, where the computation
is light-weight. Services can be composed among them by means
of the port concept to form complex ad-hoc systems and their
implementation is carried out using a component language called
UM-RTCOM. In order to apply our proposals a fire detection
application is described.

Keywords— Peer-to-peer, mobile systems, real-time, Service-
Oriented Architecture.

I. INTRODUCTION

PEER-TO-PEER (P2P) systems [1] represent a new chal-
lenge in the development of software for distributed

systems and an interesting alternative to centralized and client-
servers models.

Each node in the P2P network is symmetrical and the
mechanisms of communications are based on dynamic ad-
hoc networks among peers. The P2P approach can be ported
to mobile systems, which are composed of a set of nodes
intended to cooperate, while they are entering/leaving the net-
work continuously. Some mixed approaches keep a minimum
part of the infrastructure and central control, but our proposal
is focussed on pure ad-hoc systems. Examples of this type
of system are the sensor networks [2], consisting of spatially
distributed autonomous devices using sensors to cooperatively
monitor physical or environmental conditions; and MANET
(Mobile Ad-hoc NETworks) [3], a self-configuring network of
mobile devices such as PDAs and mobile phones connected
by wireless links.

Due to the increasing complexity of the development of
applications based on the P2P architecture, new high level
programming models are necessary in order to simplify the
developer’s task. This paper presents a component-based ser-
vice model to enable developers to specify p2p applications.

This work is supported by the EU funded project FP6 IST-5-033563 and
the Spanish project TIN2005-09405-C02-01.

C. Alcaide, M. Dı́az, L. Llopis, A. Márquez, B. Rubio and E. Soler are
with the Department of Languages and Computer Science, Málaga University,
29071, Spain.

C. Alcaide is the corresponding author to provide phone: +34 952 137147;
fax: +34 952 131397. Authors e-mail: {calcaide, mdr, luisll, amarquez, tolo,
esc}@lcc.uma.es.

The model allows us to define the services that peers can
provide or require in the network. The access points to the peer
services are the ports which define the commands and events
that other peers require. P2P applications may need to define
real-time requirements, for example, the establishment of a
priority order to attend service queries. In this sense, the model
allows us to include real-time constraints in the ports, that is,
developers can assign characteristics such as service periods,
priorities or deadlines to commands and events. This way,
two services could be required simultaneously in the peer and
priority would establish a ordered delivery. Additionally, the
period would allow us to receive events without carrying out
the invocation. The proposed model is platform independent
and tools can be defined in order to map the specification to the
necessary implementation, for example using Windows P2P
Networking [4] on Windows platforms or JXTA [5] on Java
platforms. The service implementation is carried out using
the component based paradigm by means of the component
language UM-RTCOM [6]. It proposes a distributed model
based on light-weight component composition with real-time
features. The UM-RTCOM specification is also platform in-
dependent and includes the possibility of defining real-time
requirements.

The Service-Oriented Architecture (SOA) has been success-
fully applied in a lot of infrastructure-based and client-server
model based distributed systems, being Web Services the best
known standard [7]. Recently, some work based on the SOA
paradigm oriented to P2P systems has appeared. The following
list shows some related work. They mainly differ from our
approach because either they do not provide a high level
abstraction model that facilities the application programmer
task or they are focused on infrastructure based systems:

• The JXTA plaform, is a set of simple, open source P2P
protocols that enable any device in the network to com-
municate, collaborate, and share resources. It is a useful
tool for implementing P2P systems but can be difficult to
apply in complex systems without an abstraction model.
It is a good platform to support a service model.

• JMobiPeer [8], developed in the University of Cata-
nia, proposes an alternative to JXTA more oriented to
MANETs. It tries to solve the faults existing in the JXME
version of JXTA at the time of development. However, it
does not offer an abstraction model.

• DeEvolve [9] approaches the problem giving a flexible
notation for the composition of services including the
handling of exceptions such as failure of peers. It is based
on JXTA and offers an exception handling mechanism to

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

416International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

02
8.

pd
f

control peer failures. It is oriented to infrastructure-based
P2P systems.

• The middleware for wireless sensor networks (WSNs)
presented in [10], provides a layer between user ap-
plications and the network. Such middleware offers an
autmatic choice of the netowrk configuration and data
dissemination strategy. It is implemented in Java and uses
the XML language and the SOAP protocol to represent
all application communications.

• The work proposed in [11] aims to build a middleware
for WSNs that is based on the service-oriented archi-
tecture using Web Services and Grid technologies. They
include probability models in order to improve the quality
of service for service-oriented WSN applications.

In the following sections a concise explanation of the UM-
RTCOM model (Section II) and a detailed vision of the
proposed model (Section III) is presented. Additionally, in
Section IV a fire detection system example is described using
our approach. Finally, in Section V some conclusions and
future work are sketched.

II. THE UM-RTCOM MODEL

UM-RTCOM components are light-weight components
which do not depend on any specific execution platform
or heavy framework. Instead, UM-RTCOM components are
developed in a platform independent way and are later de-
ployed in specific platforms like executables or libraries with a
minimum overhead. In addition, UM-RTCOM components are
complemented by an abstract model of their behavior (based
on SDL). This abstract model allows us to perform different
types of analysis such as for example real-time analysis,
deadlock freedom, liveness properties, etc. In this sense, a
UM-RTCOM component is the sum of the code and abstract
model.

The model improves some features of standard component
models, adding constructions to express temporal constraints,
synchronization, quality of service, events, etc. It is a hier-
archical model where components act as containers of other
components and, at the same time, provide interfaces.

A. Component Types

There are two main component types: primitive and generic.
Generic components are the standard components of the
model. They provide services through interfaces and can
require services of other generic components. On the other
hand, primitive components (active or passive) are contained
in generic components. They are the basis for building
generic components, representing execution threads or shared
resources.

1) Generic Components: These components are the basis of
the model. They act ascontainers of other components, generic
or primitive, and they can be composed of other generic
components in order to complete their functionality.

A generic component has a public definition part with the
provided and required interfaces, and an implementation part
which includes the implementation of the services offered. The

model distinguishes between input interfaces (provided) and
output interfaces (required).

UM-RTCOM also allows events to be used through
the declaration of produced and consumed events. In this
programming-style, a component declares what events pro-
duce and what events consume. This way, components can
communicate with each other without common interfaces.

2) Active Components: These components are primitive
elements used to to express ”execution flows” inside a generic
component. Concurrency is an important factor in real-time
systems, so we use first-order elements to model it. In addition,
the use of these components is also motivated by the later
analysis phases.

Active components are responsible for the execution flow
inside generic components through the interaction with other
elements such as passive or generic components. Active com-
ponents are also responsible for the treatment of the invocation
requests to the generic container. Thus, the response to incom-
ing requests is delegated to these primitive components.

The use of an Active component requires a definition part
and a declaration part. In the definition part, the component
defines a special ”execute” method to be invoked by the sys-
tem in different ways: time-triggered, event-triggered, service
requests, etc.

3) Passive Components: Shared resources are another im-
portant element in embedded and real-time systems. Passive
components are primitive elements which allow us to use
shared resources in the model. Basically, they cannot initiate
any action and offer some basic services which can be invoked
from active components. This behavior is used in order to
facilitate later analysis phases. Passive components provide
mutual exclusion with priority ceiling mechanisms which
avoid priority inversions.

Generic1.o1 <-> Generic2.I1;

Active MyActive2 {
 void execute() {
 short var_aux;
 wait I1.method1(a1,a2,a3)
 {var_aux=a1+a2+a3; }

 I1.method2(arg1);
{ var_aux=arg1+1; }

 }
}

Active MyActive1 {
 void execute() {
 short a1,a2,a3;
 a1=1; a2=2; a3=3;
 call o1.method1(a1,a2,a3);
 call o1.method2(a3);
 }
}

interface I1 {
void method1(in short a1,
 in short a2,in short a3);
void method2(in short a1);

}

MyActive1 I1 MyActive2

O1

Generic1

Generic2

Fig. 1. Synchronization Primitives.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

417International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

02
8.

pd
f

B. Component Interactions

Communication between components is performed through
interfaces and events. UM-RTCOM provides synchronization
primitives (wait, call, raise) which allow services and events
to be invoked, raised or waited for.

• Wait Primitive: This primitive is used to waiting for
new invocations on services or the creation of consumed
events. It is used in Active components.

• Call Primitive: Primitive call is used to invoke services of
generic components. It can be used in Active or Passive
components.

• Raise Primitive: This primitive is used to raise events in
an asynchronous way. When a component raises an event,
this event is caught by all the components consuming that
event.

Fig. 1 shows an example where two generic components
(Generic1 and Generic2) are interconnected. The example
shows how the Active component Generic1::MyActive1 calls
the method I1::method1 provided by Generic2 where the
request is attended to by Generic2::MyActive2 using the wait
primitive.

C. Real-time Constraints Specification

The user can indicate real-time constraints in the compo-
nents. This is a very important element which is not included
in other component models. This way, the user specifies the
requirements regarding how a component is used.

The only elements visible of a component are the interfaces
and events. The user can specify temporal constraints for
methods or events indicating the minimum period between
two invocations or a deadline for completing the request.

III. THE COSP2P MODEL

The proposed work is a service-based model, oriented to
P2P systems without infrastructure, where developers can
define the services to be offered by network nodes. It also
specifies how these services can be composed in order to create
distributed applications and declare the necessary ports so that
each node has access to the services offered by other nodes.

Additionally, real-time constraints can be specified to the
links between services in order to form systems with timing
requirements in P2P environments.

Fig. 2 shows a graphical example of a service-composition
scheme. When the port is facing inwards it means that it is
a provided port. Optional ports are drawn in a dark color.
Moreover, components and ports are connected by means of
a dash-dotted lines. Although it is not shown in this figure, a
peer can provide more than one service. In the example, the
service offered by Peer A requires these different ports in order
to be provided: the ports offered by B and C are required and
the port offered by D is optional.

CoSP2P is an intermediate layer (Fig. 3) that allows appli-
cations to be developed composing services using components
defined with the UM-RTCOM model.

The syntax to develop applications meeting the service
paradigm is shown in Fig. 4, where ports, services and im-
plementation declarations have been separated into blocks. In

Fig. 2. Service Composition Example.

the following subsections a fuller explanation of the proposed
syntax is presented.

Fig. 3. The Abstract Layers.

A. Port Declaration

Ports are the access points to peers services. Additionally,
each port is linked to the components that finally implement
the commands and the events offered by it. Ports are also
the mechanism used to compose the services offered to the
system by the nodes. Inside a port definition, developers can
define commands and events. Commands are synchronous
communication mechanisms, and events are asynchronous
communication mechanisms. For example, in our fire detection
system (described in section IV), temperature sensors will
communicate with the rest of the services in an asynchronous
way by firing an event when a fixed temperature is reached.

Ports are global definitions to all the services, therefore no
implementation details are associated with them. This way,
different service offering a specific port can be implement in
different ways: different execution platforms, programming
languages, algorithms, etc. Bellow, a simple port is defined:

Port MyPort {
command GetValue(out int value);
event High;

}

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

418International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

02
8.

pd
f

Fig. 4. Model Syntaxis.

MyPort defines a command named GetValue that takes
one output parameter, and an event called High. The real-
time restrictions can be established to commands and events
declared in a port declaration. These restrictions are specified
by the keywords Priority, Deadline and Period.

• Priority: This primitive allows us to define the priority
of the commands and events.

• Deadline: This restrictions defines the maximum execu-
tion time for a command.

• Period: This primitive allows us to establish the
execution period for an event.

command MyCommand() constraints Deadline 5000,Priority 5;
event MyEvent constraints Period 1000, Priority 10;

The previous example shows the definition of a command
and an event; MyCommand has five-second deadline constraint
and priority of 5 is assigned, MyEvent has an execution period
of one-second and priority of 10 is assigned.

B. Service Definition

A service definition is composed of: firstly, a service de-
scription followed by the ports that are going to take part in

the service. The port classification is divided into three types:
provided ports, required ports and optional ports:

• Provided ports: Ports that the service offers to other
services. The rest of the nodes can query to this service
through the provided ports.

• Required ports: Ports that a service needs in order to
be executed. Other nodes in the network must offer these
services.

• Optional ports: These ports are associated with non
crucial services, e.g. ports used to monitor the system.

Finally, it is possible to define communication groups so that
a service can communicate with services of the same group.
A service can belong to one or several groups.

The code below represents a service definition; firstly, we
write a brief description, then, we define that the service
provides one port (MyPort) and only one port is required
(OtherPeerPort). In this example, the service has no optional
ports. Finally, we specify that MyService belongs to the
ExampleGroup group.

Service MyService {
Description = "Example service";
Provides MyPort;
Requires OtherPeerPort;
Groups ExampleGroup;

}

C. Service Implementation

When a service have been specified, its implementation
must be declared:

1) Firstly, the components that implements the service are
defined. The final implementation is carried out by the
UM-RTCOM components.

2) The connection between ports and UM-RTCOM com-
ponents must be specified. This is specified in the port
binding declaration. In this block, port commands and
events are linked to the component commands and
events.

3) Since a service can be implemented by various
components, it is necessary to declare how each
component is composed with the rest. This is specified
following the UM-RTCOM model syntaxis.

Service implementation MyService {
Components AComponent compoment;
Port bind
{
MyPort.GetValue = component.GetValue;
MyPort.High = component.High;
OtherPeerPort.GetTemp = component.GetTemp;
OtherPeerPort.TempHigh = component.TempHigh;

}
}

IV. EXAMPLE

In this section, we present a practical application that has
been considered to test the component-based service model.
Firstly, we show a brief description of the system, then we de-
tail the different parts of our solution describing the design of
the ports and services used and, finally, some implementation
details are sketched.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

419International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

02
8.

pd
f

Fig. 5. Example System.

A. System Description

The example consists of a sensor and actor network for
monitoring (in order to monitor and control fire in a building)
(Fig. 5). We require four types of peers: the fire detector peer
is an actor that is able to detect a possible fire and then act
accordingly. The temperature-sensor and smoke-sensor peers
provide temperature and smoke level measurements respec-
tively. The monitor peer receives data about the actions carried
out by the fire detector, updates the temperature and smoke
threshold values used to trigger the corresponding events.

The system is composed of only one fire detector, but there
could be one or more temperature/smoke sensors per room
and any number of monitors. In order to provide the fire
detection service, at least one temperature sensor and a smoke
one smoke sensor must be available. Therefore, temperature
and smoke ports are required monitoring ports will be optional.

The group creation can be done of many ways, for example
one possible solution could be to form a group for each room
and another for all monitors or simply one group for all
communications. Finally, in our example we have proposed
three kind of groups (Fig. 6):

• Temperature group: where temperature sensors and the
fire detector communicate with each other.

• Smoke group: composed of smoke sensors and the fire
detector.

• Monitor group: the fire detector sends all monitor peers
the information about building fire control.

B. Designing the Fire Detector System with CoSP2P

In order to create a system based on service composition, we
must define the ports that will be provided by services, and it is
also necessary to describe services and their implementations.

In the proposed system four ports exist, one for each service,
although a service can usually provide more than one. For
example a calculator service may provide two types of ports,
one for standard calculus and another for a scientific one.

In the example below, the temperature port offers a
command to obtain the temperature and raises an event when
the temperature is higher than a given threshold. The smoke
port is defined in the same way as the temperature port and

the monitor port has only one command in order to get data
displayed on the screen.

Fig. 6. Groups.

Port PTemperature {
command GetTemp(out float data, out Unique id)

constraints Deadline 5000;
event TempHigh constraints Priority 5;

}
Port PSmoke {

command GetSmoke(out float data, out Unique id)
constraints Deadline 5000;

event SmokeHigh constraints Priority 10;
}
Port PMonitor {

command DisplayData(in String data)

}

As stated before, it is possible to define deadline constraints
in commands, in this case, the commands GetTemp and
GetSmoke have five seconds as maximum execution time. Fur-
thermore, the priority constraint allows us to define the priority
of the port commands and events. In the example, a priority
of 5 is assigned to event TempHigh of the port temperature
and a priority of 10 is assigned to event SmokeHigh of the
port smoke.

The definition of the temperature service is really short, it
include a brief description, it only provides the temperature
port and specifies that it belongs to the temperature group.

Service STemperature {
Description "...";
Provides PTemperature;
Groups TempGroup;

}

As we defined in subsection , the fire detector service
requires that at least one port of each sensor type is available.
The monitor port is optional. Moreover, this service belongs
to all three groups.

Service SFireDetection {
Description "...";
Requires PTemperature, PSmoke;
Optional PMonitor;
Groups TempGroup, SmokeGroup, MonitorGroup;

}

Finally, the implementations of temperature service and
fire detection service are the following:

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

420International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

02
8.

pd
f

Service implementation STemperature {
Components Temperature temp, ...;
Port bind
{

PTemperature.GetTemp = temp.TempData;
PTemperature.TempHigh = temp.TempHigh;

}
... Component composition ...

}

Service implementation SFireDetection {
Components Control control, Alarm alarm, Sprinkler

sprinkler;
Port bind
{

PFireDetection.CheckFire = control.CheckFire;
PFireDetection.Fire = control.Fire;
PTemperature.GetTemp = control.TempData;
PTemperature.TempHigh = control.TempHigh;
PSmoke.GetSmoke = control.SmokeData;
PSmoke.SmokeHigh = control.SmokeHigh;
PMonitor.DisplayData = control.DisplayData;

}
... Component composition ...

}

It is only necessary to include on the one hand, the list of
components that are going to be bound with the service ports
and, on the other hand, the component composition using the
UM-RTCOM model as we described previously.

It is important to point out that it is possible to define
different components to provide the same service.

C. Implementation

In order to test the proposed service model, a first proto-
type has been implemented. The model allows developers to
define systems independently of platform and programming
language. We decided to implement our application example
using Windows P2P Networking, but it can also be realized
on the JXTA P2P framework with the same design.

The application can provide the four services described. The
Fig. 7 shows the fire detector screen with three temperature
peers and three smoke peers connected. On the other hand, the
Fig. 8 are screenshots of the other three peers; the temperature
sensor and smoke sensor only show their sensor values, and
the monitor peer contains a list with fire detector information
(connection and disconnection of sensors, high values of
temperature or smoke, fire detector actions, etc.).

The implementation has been tested on top of an ad-hoc
network using a laptop computer for each peer.

Fig. 7. Fire Detector Screen.

Fig. 8. Temperature Sensor, Smoke Sensor and Monitor Screens.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented CoSP2P, a novel
component-based service model for P2P systems. We propose
a syntax to describe this kind of systems independently of the
programming languages or operative systems used. The model
provides the possibility of including real-time constraints in
order to form systems with timing requirements in P2P envi-
ronments. Furthermore, with the description of a fire detector
system, we have deployed an application using Windows P2P
Networking in order to assess the model expressiveness.

As future work, we are currently extending the model
syntax, as well as port and service definitions, including
declarations of the peers and groups that can take part in a
system. On the other hand, we intend to include an exception
handler, to provide semantics to group formation and develop,
using the proxyless version of JXME, a system described with
the proposed model.

REFERENCES

[1] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja,
Jim Pruyne, Bruno Richard, Sami Rollins, Zhichen XU. Peer-to-Peer
Computing. Technical report, Hewlett-Packard, 2002.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. Wireless Sensor
Networks: A Survey. Computer Networks Journal, 38(4): pp. 393–422,
2002.

[3] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad
hoc network research. Wireless Communications & Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, 2(5): pp. 483-502, 2002.

[4] Introduction to Windows Peer-to-Peer Networking. URL:
www.microsoft.com/technet/prodtechnol/winxppro/deploy/p2pintro.mspx

[5] Project JXTA. URL: http://www.jxta.org.
[6] Diaz M., Garrido D.,Llopis L., Rus F., Troya J.M. Integrating Real-Time

Analysis in a Component Model for Embedded Systems. Proceedings of
the 30th IEEE Euromicro Conference, pp. 14–21, 2004.

[7] Guido Dehlen, Linh Pham. Mobile Web Services for Peer-to-Peer Ap-
plications. Consumer Communications and Networking Conference, pp.
427–433, 2005.

[8] Mariano Bisignano, Giuseppe Di Modica, Orazio Tomarchio. JMobiPeer:
a middleware for mobile peer-to-peer computing in MANETs. Proceed-
ings of the 25th IEEE International Conference on Distributed Computing
Systems Workshops (ICDCSW’05), pp. 785–791, 2005.

[9] Sascha Alda, Armin B. Cremers. Towards Composition Management
for Component-based Peer-to-Peer Architectures. Electronic Notes in
Theoretical Computer Science 2005, 114: pp. 47–64, 2005.

[10] Flávia C. Delicato, Paulo Pires, Jos Ferreira de Rezende, Luiz Rust
da Costa Carmo, Luci Pirmez. Service-oriented Middleware for Wireless
Sensor Networks. Proceedings of the 2005 ACM symposium on Applied
computing, pp. 1155–1159, 2005.

[11] L.Q. Zhuang, J.B. Zhang, Y.Z. Zhao, M. Luo, D.H. Zhang, Z.H. Yang.
Power-aware Service-oriented Architecture for Wireless Sensor Networks.
Industrial Electronics Society, 2005. IECON 2005. 32nd Annual Confer-
ence of IEEE, pp. 2296–2301, 2005.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:1, No:3, 2007

421International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

02
8.

pd
f

