Search results for: power flow
2264 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels
Authors: Abdulrahman Abdulrahman
Abstract:
A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.
Keywords: Analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9272263 Bipolar PWM and LCL Filter Configuration to Reduce Leakage Currents in Transformerless PV System Connected to Utility Grid
Authors: Shanmuka Naga Raju
Abstract:
This paper presents PV system without considering transformer connected to electric grid. This is considered more economic compared to present PV system. The problem that occurs when transformer is not considered appears with a leakage current near capacitor connected to ground. Bipolar Pulse Width Modulation (BPWM) technique along with filter L-C-L configuration in the circuit is modeled to shrink the leakage current in the circuit. The DC/AC inverter is modeled using H-bridge Insulated Gate Bipolar Transistor (IGBT) module which is controlled using proposed Bipolar PWM control technique. To extract maximum power, Maximum Power Point Technique (MPPT) controller is used in this model. Voltage and current regulators are used to determine the reference voltage for the inverter from active and reactive current where reactive current is set to zero. The PLL is modeled to synchronize the measurements. The model is designed with MATLAB Simulation blocks and compared with the methods available in literature survey to show its effectiveness.Keywords: Photovoltaic, PV, pulse width modulation, PWM, perturb and observe, phase locked loop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10212262 Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
The widespread popularity of mobile devices and the development of artificial intelligence (AI) have led to the widespread adoption of deep learning (DL) in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace, a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Additionally, we propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. Using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We conduct an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace outperformed FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.
Keywords: Mobile computing, deep learning apps, sensitive information, static analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5962261 64 bit Computer Architectures for Space Applications – A study
Authors: Niveditha Domse, Kris Kumar, K. N. Balasubramanya Murthy
Abstract:
The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.Keywords: RISC MicroProcessor, RPC – RISC Processor Core, PBX – Processor to Block Interface part of the Interconnection Network, BPX – Block to Processor Interface part of the Interconnection Network, FPU – Floating Point Unit, SPU – Signal Processing Unit, WB – Wishbone Interface, CTU – Clock and Test Unit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22482260 Circular Patch Microstrip Array Antenna for KU-band
Authors: T.F.Lai, Wan Nor Liza Mahadi, Norhayati Soin
Abstract:
This paper present a circular patch microstrip array antenna operate in KU-band (10.9GHz – 17.25GHz). The proposed circular patch array antenna will be in light weight, flexible, slim and compact unit compare with current antenna used in KU-band. The paper also presents the detail steps of designing the circular patch microstrip array antenna. An Advance Design System (ADS) software is used to compute the gain, power, radiation pattern, and S11 of the antenna. The proposed Circular patch microstrip array antenna basically is a phased array consisting of 'n' elements (circular patch antennas) arranged in a rectangular grid. The size of each element is determined by the operating frequency. The incident wave from satellite arrives at the plane of the antenna with equal phase across the surface of the array. Each 'n' element receives a small amount of power in phase with the others. There are feed network connects each element to the microstrip lines with an equal length, thus the signals reaching the circular patches are all combined in phase and the voltages add up. The significant difference of the circular patch array antenna is not come in the phase across the surface but in the magnitude distribution.
Keywords: Circular patch microstrip array antenna, gain, radiation pattern, S-Parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31132259 An Efficient Stud Krill Herd Framework for Solving Non-Convex Economic Dispatch Problem
Authors: Bachir Bentouati, Lakhdar Chaib, Saliha Chettih, Gai-Ge Wang
Abstract:
The problem of economic dispatch (ED) is the basic problem of power framework, its main goal is to find the most favorable generation dispatch to generate each unit, reduce the whole power generation cost, and meet all system limitations. A heuristic algorithm, recently developed called Stud Krill Herd (SKH), has been employed in this paper to treat non-convex ED problems. The proposed KH has been modified using Stud selection and crossover (SSC) operator, to enhance the solution quality and avoid local optima. We are demonstrated SKH effects in two case study systems composed of 13-unit and 40-unit test systems to verify its performance and applicability in solving the ED problems. In the above systems, SKH can successfully obtain the best fuel generator and distribute the load requirements for the online generators. The results showed that the use of the proposed SKH method could reduce the total cost of generation and optimize the fulfillment of the load requirements.
Keywords: Stud Krill Herd, economic dispatch, crossover, stud selection, valve-point effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8792258 CNet Module Design of IMCS
Authors: Youkyung Park, SeungYup Kang, SungHo Kim, SimKyun Yook
Abstract:
IMCS is Integrated Monitoring and Control System for thermal power plant. This system consists of mainly two parts; controllers and OIS (Operator Interface System). These two parts are connected by Ethernet-based communication. The controller side of communication is managed by CNet module and OIS side is managed by data server of OIS. CNet module sends the data of controller to data server and receives commend data from data server. To minimizes or balance the load of data server, this module buffers data created by controller at every cycle and send buffered data to data server on request of data server. For multiple data server, this module manages the connection line with each data server and response for each request from multiple data server. CNet module is included in each controller of redundant system. When controller fail-over happens on redundant system, this module can provide data of controller to data sever without loss. This paper presents three main features – separation of get task, usage of ring buffer and monitoring communication status –of CNet module to carry out these functions.Keywords: Ethernet communication, DCS, power plant, ring buffer, data integrity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15632257 A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics
Authors: T. Delval, C. Sauvage, Q. Jullien, R. Viano, T. Diallo, B. Collignan, G. Picinbono
Abstract:
In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.
Keywords: BIM, knowledge management, system expert, risk management, indoor ventilation, pedestrian movement, integrated design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7612256 Adequacy of Object-Oriented Framework System-Based Testing Techniques
Authors: Jehad Al Dallal
Abstract:
An application framework provides a reusable design and implementation for a family of software systems. If the framework contains defects, the defects will be passed on to the applications developed from the framework. Framework defects are hard to discover at the time the framework is instantiated. Therefore, it is important to remove all defects before instantiating the framework. In this paper, two measures for the adequacy of an object-oriented system-based testing technique are introduced. The measures assess the usefulness and uniqueness of the testing technique. The two measures are applied to experimentally compare the adequacy of two testing techniques introduced to test objectoriented frameworks at the system level. The two considered testing techniques are the New Framework Test Approach and Testing Frameworks Through Hooks (TFTH). The techniques are also compared analytically in terms of their coverage power of objectoriented aspects. The comparison study results show that the TFTH technique is better than the New Framework Test Approach in terms of usefulness degree, uniqueness degree, and coverage power.Keywords: Object-oriented framework, object-oriented framework testing, test case generation, testing adequacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14302255 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets
Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar
Abstract:
Numerical studies have been carried out using a validated two-dimensional standard k-omega turbulence model for the design optimization of a thrust vector control system using shock induced self-impinging supersonic secondary double jet. Parametric analytical studies have been carried out at different secondary injection locations to identifying the highest unsymmetrical distribution of the main gas flow due to shock waves, which produces a desirable side force more lucratively for vectoring. The results from the parametric studies of the case on hand reveal that the shock induced self-impinging supersonic secondary double jet is more efficient in certain locations at the divergent region of a CD nozzle than a case with supersonic single jet with same mass flow rate. We observed that the best axial location of the self-impinging supersonic secondary double jet nozzle with a given jet interaction angle, built-in to a CD nozzle having area ratio 1.797, is 0.991 times the primary nozzle throat diameter from the throat location. We also observed that the flexible steering is possible after invoking ON/OFF facility to the secondary nozzles for meeting the onboard mission requirements. Through our case studies we concluded that the supersonic self-impinging secondary double jet at predesigned jet interaction angle and location can provide more flexible steering options facilitating with 8.81% higher thrust vectoring efficiency than the conventional supersonic single secondary jet without compromising the payload capability of any supersonic aerospace vehicle.Keywords: Fluidic thrust vectoring, rocket steering, self-impinging secondary supersonic jet, TVC in aerospace vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26812254 A ZVS Flyback DC-DC Converter using Multilayered Coreless Printed-Circuit Board(PCB) Step-down Power Transformer
Authors: Hari Babu Kotte, Radhika Ambatipudi, Dr. Kent Bertilsson
Abstract:
The experimental and theoretical results of a ZVS (Zero Voltage Switching) isolated flyback DC-DC converter using multilayered coreless PCB step down 2:1 transformer are presented. The performance characteristics of the transformer are shown which are useful for the parameters extraction. The measured energy efficiency of the transformer is found to be more than 94% with the sinusoidal input voltage excitation. The designed flyback converter has been tested successfully upto the output power level of 10W, with a switching frequency in the range of 2.7MHz-4.3MHz. The input voltage of the converter is varied from 25V-40V DC. Frequency modulation technique is employed by maintaining constant off time to regulate the output voltage of the converter. The energy efficiency of the isolated flyback converter circuit under ZVS condition in the MHz frequency region is found to be approximately in the range of 72-84%. This paper gives the comparative results in terms of the energy efficiency of the hard switched and soft switched flyback converter in the MHz frequency region.Keywords: Coreless PCB step down transformer, DC-DCconverter, Flyback, Hard Switched Converter, MHz frequencyregion, Multilayered PCB transformer, Zero Voltage Switching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42442253 Low Complexity Peak-to-Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System by Simultaneously Applying Partial Transmit Sequence and Clipping Algorithms
Authors: V. Sudha, D. Sriram Kumar
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) has been used in many advanced wireless communication systems due to its high spectral efficiency and robustness to frequency selective fading channels. However, the major concern with OFDM system is the high peak-to-average power ratio (PAPR) of the transmitted signal. Some of the popular techniques used for PAPR reduction in OFDM system are conventional partial transmit sequences (CPTS) and clipping. In this paper, a parallel combination/hybrid scheme of PAPR reduction using clipping and CPTS algorithms is proposed. The proposed method intelligently applies both the algorithms in order to reduce both PAPR as well as computational complexity. The proposed scheme slightly degrades bit error rate (BER) performance due to clipping operation and it can be reduced by selecting an appropriate value of the clipping ratio (CR). The simulation results show that the proposed algorithm achieves significant PAPR reduction with much reduced computational complexity.
Keywords: CCDF, OFDM, PAPR, PTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13692252 A Low Power SRAM Base on Novel Word-Line Decoding
Authors: Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati, Ali Sarchami
Abstract:
This paper proposes a low power SRAM based on five transistor SRAM cell. Proposed SRAM uses novel word-line decoding such that, during read/write operation, only selected cell connected to bit-line whereas, in conventional SRAM (CV-SRAM), all cells in selected row connected to their bit-lines, which in turn develops differential voltages across all bit-lines, and this makes energy consumption on unselected bit-lines. In proposed SRAM memory array divided into two halves and this causes data-line capacitance to reduce. Also proposed SRAM uses one bit-line and thus has lower bit-line leakage compared to CV-SRAM. Furthermore, the proposed SRAM incurs no area overhead, and has comparable read/write performance versus the CV-SRAM. Simulation results in standard 0.25μm CMOS technology shows in worst case proposed SRAM has 80% smaller dynamic energy consumption in each cycle compared to CV-SRAM. Besides, energy consumption in each cycle of proposed SRAM and CV-SRAM investigated analytically, the results of which are in good agreement with the simulation results.Keywords: SRAM, write Operation, read Operation, capacitances, dynamic energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26482251 Numerical Investigation of Developing Mixed Convection in Isothermal Circular and Annular Sector Ducts
Authors: Ayad A. Abdalla, Elhadi I. Elhadi, Hisham A. Elfergani
Abstract:
Developing mixed convection in circular and annular sector ducts is investigated numerically for steady laminar flow of an incompressible Newtonian fluid with Pr = 0.7 and a wide range of Grashof number (0 £ Gr £ 107). Investigation is limited to the case of heating in circular and annular sector ducts with apex angle of 2ϕ = π/4 for the thermal boundary condition of uniform wall temperature axially and peripherally. A numerical, finite control volume approach based on the SIMPLER algorithm is employed to solve the 3D governing equations. Numerical analysis is conducted using marching technique in the axial direction with axial conduction, axial mass diffusion, and viscous dissipation within the fluid are assumed negligible. The results include developing secondary flow patterns, developing temperature and axial velocity fields, local Nusselt number, local friction factor, and local apparent friction factor. Comparisons are made with the literature and satisfactory agreement is obtained. It is found that free convection enhances the local heat transfer in some cases by up to 2.5 times from predictions which account for forced convection only and the enhancement increases as Grashof number increases. Duct geometry and Grashof number strongly influence the heat transfer and pressure drop characteristics.
Keywords: Mixed convection, annular and circular sector ducts, heat transfer enhancement, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5472250 Evaluation of Stormwater Quantity and Quality Control through Constructed Mini Wet Pond: A Case Study
Authors: Y. S. Liew, K. A. Puteh Ariffin, M. A. Mohd Nor
Abstract:
One of the Best Management Practices (BMPs) promoted in Urban Stormwater Management Manual for Malaysia (MSMA) published by the Department of Irrigation and Drainage (DID) in 2001 is through the construction of wet ponds in new development projects for water quantity and quality control. Therefore, this paper aims to demonstrate a case study on evaluation of a constructed mini wet pond located at Sekolah Rendah Kebangsaan Seksyen 2, Puchong, Selangor, Malaysia in both stormwater quantity and quality aspect particularly to reduce the peak discharge by temporary storing and gradual release of stormwater runoff from an outlet structure or other release mechanism. The evaluation technique will be using InfoWorks Collection System (CS) as the numerical modeling approach for water quantity aspect. Statistical test by comparing the correlation coefficient (R2), mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the model in simulating the peak discharge changes. Results demonstrated that there will be a reduction in peak flow at 11 % to 15% and time to peak flow is slower by 5 minutes through a wet pond. For water quality aspect, a survey on biological indicator of water quality carried out depicts that the pond is within the range of rather clean to clean water with the score of 5.3. This study indicates that a constructed wet pond with wetland facilities is able to help in managing water quantity and stormwater generated pollution at source, towards achieving ecologically sustainable development in urban areas.
Keywords: Wet pond, Retention Facilities, Best Management Practices (BMP), Urban Stormwater Management Manual for Malaysia (MSMA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25272249 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran
Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad
Abstract:
The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.
Keywords: Natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10472248 Application of Genetic Algorithm for FACTS-based Controller Design
Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel
Abstract:
In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..
Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25432247 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults
Authors: Ioannis Binas, Marios Moschakis
Abstract:
Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.
Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8142246 Cubic Splines and Fourier Series Approach to Study Temperature Variation in Dermal Layers of Elliptical Shaped Human Limbs
Authors: Mamta Agrawal, Neeru Adlakha, K.R. Pardasani
Abstract:
An attempt has been made to develop a seminumerical model to study temperature variations in dermal layers of human limbs. The model has been developed for two dimensional steady state case. The human limb has been assumed to have elliptical cross section. The dermal region has been divided into three natural layers namely epidermis, dermis and subdermal tissues. The model incorporates the effect of important physiological parameters like blood mass flow rate, metabolic heat generation, and thermal conductivity of the tissues. The outer surface of the limb is exposed to the environment and it is assumed that heat loss takes place at the outer surface by conduction, convection, radiation, and evaporation. The temperature of inner core of the limb also varies at the lower atmospheric temperature. Appropriate boundary conditions have been framed based on the physical conditions of the problem. Cubic splines approach has been employed along radial direction and Fourier series along angular direction to obtain the solution. The numerical results have been computed for different values of eccentricity resembling with the elliptic cross section of the human limbs. The numerical results have been used to obtain the temperature profile and to study the relationships among the various physiological parameters.Keywords: Blood Mass Flow Rate, Metabolic Heat Generation, Fourier Series, Cubic splines and Thermal Conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18002245 Thermo-Mechanical Characterization of Skin Laser Soldering using Au Coated SiO2 Nanoshells
Authors: M.S.Nourbakhsh, M.E.khosroshahi
Abstract:
Gold coated silica core nanoparticles have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for particular applications. The purposes of this study was to synthesize and use different concentration of gold nanoshells as exogenous material for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different concentration of gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810nm diode laser at different power densities. The changes of tensile strength σt due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σt of repaired incisions increases by increasing the concentration of gold nanoshells, Ns and decreasing Vs. It is therefore important to consider the trade off between the scan velocity and the surface temperature for achieving an optimum operating condition. In our case this corresponds to σt =1610 gr/cm2 at I~ 60 Wcm-2, T ~ 65ºC, Ns =10 and Vs=0.2mms-1.Keywords: Tissue soldering, Diode laser, Gold Nanoshells, Tensile strength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14982244 A High Level Implementation of a High Performance Data Transfer Interface for NoC
Authors: Mansi Jhamb, R. K. Sharma, A. K. Gupta
Abstract:
The distribution of a single global clock across a chip has become the major design bottleneck for high performance VLSI systems owing to the power dissipation, process variability and multicycle cross-chip signaling. A Network-on-Chip (NoC) architecture partitioned into several synchronous blocks has become a promising approach for attaining fine-grain power management at the system level. In a NoC architecture the communication between the blocks is handled asynchronously. To interface these blocks on a chip operating at different frequencies, an asynchronous FIFO interface is inevitable. However, these asynchronous FIFOs are not required if adjacent blocks belong to the same clock domain. In this paper, we have designed and analyzed a 16-bit asynchronous micropipelined FIFO of depth four, with the awareness of place and route on an FPGA device. We have used a commercially available Spartan 3 device and designed a high speed implementation of the asynchronous 4-phase micropipeline. The asynchronous FIFO implemented on the FPGA device shows 76 Mb/s throughput and a handshake cycle of 109 ns for write and 101.3 ns for read at the simulation under the worst case operating conditions (voltage = 0.95V) on a working chip at the room temperature.Keywords: Asynchronous, FIFO, FPGA, GALS, Network-on- Chip (NoC), VHDL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20402243 A High Performance Technique in Harmonic Omitting Based on Predictive Current Control of a Shunt Active Power Filter
Authors: K. G. Firouzjah, A. Sheikholeslami
Abstract:
The perfect operation of common Active Filters is depended on accuracy of identification system distortion. Also, using a suitable method in current injection and reactive power compensation, leads to increased filter performance. Due to this fact, this paper presents a method based on predictive current control theory in shunt active filter applications. The harmonics of the load current is identified by using o–d–q reference frame on load current and eliminating the DC part of d–q components. Then, the rest of these components deliver to predictive current controller as a Threephase reference current by using Park inverse transformation. System is modeled in discreet time domain. The proposed method has been tested using MATLAB model for a nonlinear load (with Total Harmonic Distortion=20%). The simulation results indicate that the proposed filter leads to flowing a sinusoidal current (THD=0.15%) through the source. In addition, the results show that the filter tracks the reference current accurately.
Keywords: Active filter, predictive current control, low pass filter, harmonic omitting, o–d–q reference frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18292242 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor
Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir
Abstract:
This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.Keywords: Centrifugal compressor, contra-rotating, interaction rotor, vacuum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8292241 Harmonic Analysis and Performance Improvement of a Wind Energy Conversions System with Double Output Induction Generator
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
Wind turbines with double output induction generators can operate at variable speed permitting conversion efficiency maximization over a wide range of wind velocities. This paper presents the performance analysis of a wind driven double output induction generator (DOIG) operating at varying shafts speed. A periodic transient state analysis of DOIG equipped with two converters is carried out using a hybrid induction machine model. This paper simulates the harmonic content of waveforms in various points of drive at different speeds, based on the hybrid model (dqabc). Then the sinusoidal and trapezoidal pulse-width–modulation control techniques are used in order to improve the power factor of the machine and to weaken the injected low order harmonics to the supply. Based on the frequency spectrum, total harmonics distortion, distortion factor and power factor. Finally advantages of sinusoidal and trapezoidal pulse width modulation techniques are compared.Keywords: DOIG, Harmonic Analysis, Wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18012240 Effective Wind-Induced Natural Ventilation in a Residential Apartment Typology
Authors: Tanvi P. Medshinge, Prasad Vaidya, Monisha E. Royan
Abstract:
In India, cooling loads in residential sector is a major contributor to its total energy consumption. Due to the increasing cooling need, the market penetration of air-conditioners is further expected to rise. Natural Ventilation (NV), however, possesses great potential to save significant energy consumption especially for residential buildings in moderate climates. As multifamily residential apartment buildings are designed by repetitive use of prototype designs, deriving individual NV based design prototype solutions for a combination of different wind incidence angles and orientations would provide significant opportunity to address the rise in cooling loads by residential sector. This paper presents the results of NV performance of a selected prototype apartment design with a cluster of four units in Pune, India, and an attempt to improve the NV performance through design modifications. The water table apparatus, a physical modelling tool, is used to study the flow patterns and simulate wind-induced NV performance. Quantification of NV performance is done by post processing images captured from video recordings in terms of percentage of area with good and poor access to ventilation. NV performance of the existing design for eight wind incidence angles showed that of the cluster of four units, the windward units showed good access to ventilation for all rooms, and the leeward units had lower access to ventilation with the bedrooms in the leeward units having the least access. The results showed improved performance in all the units for all wind incidence angles to more than 80% good access to ventilation. Some units showed an additional improvement to more than 90% good access to ventilation. This process of design and performance evaluation improved some individual units from 0% to 100% for good access to ventilation. The results demonstrate the ease of use and the power of the water table apparatus for performance-based design to simulate wind induced NV.
Keywords: Prototype design, water table apparatus, NV, wind incidence angles, simulations, fluid dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11022239 Development of 3D Coordinates and Damaged Point Detection System for Ducts using IMU
Authors: Ki-Tae Park, Young-Joon Yu, Chin-Hyung Lee, Woosang Lee
Abstract:
Recently, as the scale of construction projects has increases, more ground excavation for foundations is carried out than ever before. Consequently, damage to underground ducts (gas, water/sewage or oil pipelines, communication cables or power cable ducts) or superannuated pipelines frequently cause serious accidents resulting in damage to life and property. (In Korea, the total length of city water pipelines was approximately 2,000 km as of the end of 2009.) In addition, large amounts of damage caused by fractures, water and gas leakage caused by superannuation or damage to underground ducts in construction has been reported. Therefore, a system is required to precisely detect defects and deterioration in underground pipelines and the locations of such defects, for timely and accurate maintenance or replacement of the ducts. In this study, a system was developed which can locate underground structures (gas and water pipelines, power cable ducts, etc.) in 3D-coordinates and monitor the degree and position of defects using an Inertial Measurement Unit (IMU) sensing technique. The system can prevent damage to underground ducts and superannuated pipelines during construction, and provide reliable data for maintenance. The utility of the IMU sensing technique used in aircraft and ships in civil applications was verified.Keywords: IMU, Pipelines, 3D-Coordinate, monitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18592238 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.
Keywords: Iot, activity recognition, automatic classification, unconstrained environment, deep neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11332237 A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow
Authors: Perumal Kumar, Rajamohan Ganesan
Abstract:
Addition of milli or micro sized particles to the heat transfer fluid is one of the many techniques employed for improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. Nanoparticles also increase the viscosity of the basefluid resulting in higher pressure drop for the nanofluid compared to the base fluid. So it is imperative that the Reynolds number (Re) and the volume fraction have to be optimum for better thermal hydraulic effectiveness. In this work, the heat transfer enhancement using aluminium oxide nanofluid using low and high volume fraction nanofluids in turbulent pipe flow with constant wall temperature has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. Nanofluid, up till a volume fraction of 1% is found to be an effective heat transfer enhancement technique. The Nusselt number (Nu) and friction factor predictions for the low volume fractions (i.e. 0.02%, 0.1 and 0.5%) agree very well with the experimental values of Sundar and Sharma (2010). While, predictions for the high volume fraction nanofluids (i.e. 1%, 4% and 6%) are found to have reasonable agreement with both experimental and numerical results available in the literature. So the computationally inexpensive single phase approach can be used for heat transfer and pressure drop prediction of new nanofluids.Keywords: Heat transfer intensification, nanofluid, CFD, friction factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28752236 An Intelligent Combined Method Based on Power Spectral Density, Decision Trees and Fuzzy Logic for Hydraulic Pumps Fault Diagnosis
Authors: Kaveh Mollazade, Hojat Ahmadi, Mahmoud Omid, Reza Alimardani
Abstract:
Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. The aim of this work is to investigate the effectiveness of a new fault diagnosis method based on power spectral density (PSD) of vibration signals in combination with decision trees and fuzzy inference system (FIS). To this end, a series of studies was conducted on an external gear hydraulic pump. After a test under normal condition, a number of different machine defect conditions were introduced for three working levels of pump speed (1000, 1500, and 2000 rpm), corresponding to (i) Journal-bearing with inner face wear (BIFW), (ii) Gear with tooth face wear (GTFW), and (iii) Journal-bearing with inner face wear plus Gear with tooth face wear (B&GW). The features of PSD values of vibration signal were extracted using descriptive statistical parameters. J48 algorithm is used as a feature selection procedure to select pertinent features from data set. The output of J48 algorithm was employed to produce the crisp if-then rule and membership function sets. The structure of FIS classifier was then defined based on the crisp sets. In order to evaluate the proposed PSD-J48-FIS model, the data sets obtained from vibration signals of the pump were used. Results showed that the total classification accuracy for 1000, 1500, and 2000 rpm conditions were 96.42%, 100%, and 96.42% respectively. The results indicate that the combined PSD-J48-FIS model has the potential for fault diagnosis of hydraulic pumps.Keywords: Power Spectral Density, Machine ConditionMonitoring, Hydraulic Pump, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27122235 Towards the Integration of a Micro Pump in μTAS
Authors: Y. Haik
Abstract:
The objective of this study is to present a micro mechanical pump that was fabricated using SwIFT™ microfabrication surface micromachining process and to demonstrate the feasibility of integrating such micro pump into a micro analysis system. The micropump circulates the bio-sample and magnetic nanoparticles through different compartments to separate and purify the targeted bio-sample. This article reports the flow characteristics in the microchannels and in a crescent micro pump.
Keywords: Crescent micropumps, microanalysis, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714