Search results for: realistic simulation
1015 Methods for Better Assessment of Fatigue and Deterioration in Bridges and Other Steel or Concrete Constructions
Authors: J. Menčík, B. Culek, Jr., L. Beran, J. Mareš
Abstract:
Large metal and concrete structures suffer by various kinds of deterioration, and accurate prediction of the remaining life is important. This paper informs about two methods for its assessment. One method, suitable for steel bridges and other constructions exposed to fatigue, monitors the loads and damage accumulation using information systems for the operation and the finite element model of the construction. In addition to the operation load, the dead weight of the construction and thermal stresses can be included into the model. The second method is suitable for concrete bridges and other structures, which suffer by carbonatation and other degradation processes, driven by diffusion. The diffusion constant, important for the prediction of future development, can be determined from the depth-profile of pH, obtained by pH measurement at various depths. Comparison with measurements on real objects illustrates the suitability of both methods.
Keywords: Bridges, carbonatation, concrete, diagnostics, fatigue, life prediction, monitoring, railway, simulation, structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131014 A Study of Dynamic Clustering Method to Extend the Lifetime of Wireless Sensor Network
Authors: Wernhuar Tarng, Kun-Jie Huang, Li-Zhong Deng, Kun-Rong Hsie, Mingteh Chen
Abstract:
In recent years, the research in wireless sensor network has increased steadily, and many studies were focusing on reducing energy consumption of sensor nodes to extend their lifetimes. In this paper, the issue of energy consumption is investigated and two adaptive mechanisms are proposed to extend the network lifetime. This study uses high-energy-first scheme to determine cluster heads for data transmission. Thus, energy consumption in each cluster is balanced and network lifetime can be extended. In addition, this study uses cluster merging and dynamic routing mechanisms to further reduce energy consumption during data transmission. The simulation results show that the proposed method can effectively extend the lifetime of wireless sensor network, and it is suitable for different base station locations.Keywords: Wireless sensor network, high-energy-first scheme, adaptive mechanisms, network lifetime
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391013 Secure Data Aggregation Using Clusters in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
Wireless sensor network can be applied to both abominable and military environments. A primary goal in the design of wireless sensor networks is lifetime maximization, constrained by the energy capacity of batteries. One well-known method to reduce energy consumption in such networks is data aggregation. Providing efcient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this paper, we present privacy-preserving data aggregation scheme for additive aggregation functions. The Cluster-based Private Data Aggregation (CPDA)leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme TAG, where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.Keywords: Aggregation, Clustering, Query Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17341012 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.
Keywords: Invar alloy, Aluminum, Phase equilibrium, thermal expansion coefficient, microstructure, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26551011 Averaging Model of a Three-Phase Controlled Rectifier Feeding an Uncontrolled Buck Converter
Authors: P. Ruttanee, K-N. Areerak, K-L. Areerak
Abstract:
Dynamic models of power converters are normally time-varying because of their switching actions. Several approaches are applied to analyze the power converters to achieve the timeinvariant models suitable for system analysis and design via the classical control theory. The paper presents how to derive dynamic models of the power system consisting of a three-phase controlled rectifier feeding an uncontrolled buck converter by using the combination between the well known techniques called the DQ and the generalized state-space averaging methods. The intensive timedomain simulations of the exact topology model are used to support the accuracies of the reported model. The results show that the proposed model can provide good accuracies in both transient and steady-state responses.Keywords: DQ method, Generalized state-space averaging method, Three-phase controlled rectifier, Uncontrolled buck converter, Averaging model, Modeling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38211010 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques
Authors: T. J. Jamaleddine
Abstract:
Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.Keywords: CFD, gas-solids flow, gas purging, species transport, purge column, degasser vessel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6641009 CFD Simulation and Validation of Flap Type Wave-Maker
Authors: Anant Lal, M. Elangovan
Abstract:
A general purpose viscous flow solver Ansys CFX was used to solve the unsteady three-dimensional (3D) Reynolds Averaged Navier-Stokes Equation (RANSE) for simulating a 3D numerical viscous wave tank. A flap-type wave generator was incorporated in the computational domain to generate the desired incident waves. Authors have made effort to study the physical behaviors of Flap type wave maker with governing parameters. Dependency of the water fill depth, Time period of oscillations and amplitude of oscillations of flap were studied. Effort has been made to establish relations between parameters. A validation study was also carried out against CFD methodology with wave maker theory. It has been observed that CFD results are in good agreement with theoretical results. Beaches of different slopes were introduced to damp the wave, so that it should not cause any reflection from boundary. As a conclusion this methodology can simulate the experimental wave-maker for regular wave generation for different wave length and amplitudes.Keywords: CFD, RANSE, Flap type, wave-maker, VOF, seakeeping, numerical method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39231008 Layered Multiple Description Coding For Robust Video Transmission Over Wireless Ad-Hoc Networks
Authors: Joohee Kim
Abstract:
This paper presents a video transmission system using layered multiple description (coding (MDC) and multi-path transport for reliable video communications in wireless ad-hoc networks. The proposed MDC extends a quality-scalable H.264/AVC video coding algorithm to generate two independent descriptions. The two descriptions are transmitted over different paths to a receiver in order to alleviate the effect of unstable channel conditions of wireless adhoc networks. If one description is lost due to transmission erros, then the correctly received description is used to estimate the lost information of the corrupted description. The proposed MD coder maintains an adequate video quality as long as both description are not simultaneously lost. Simulation results show that the proposed MD coding combined with multi-path transport system is largely immune to packet losses, and therefore, can be a promising solution for robust video communications over wireless ad-hoc networks.Keywords: Multiple description coding, wireless video streaming, rate control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14441007 Optimizing of Gas Consumption in Gas-burner Space Heater
Authors: Saead Negahdari, Davood Jalali Vahid
Abstract:
Nowadays, the importance of energy saving is clearance to everyone. By attention to increasing price of fuels and also the problems of environment pollutions, there are the most efforts for using fuels littler and more optimum in everywhere. This essay studies optimizing of gas consumption in gas-burner space heaters. In oven of each gas-burner space heaters there is two snags to prevent the hot air (the result of combustion of natural gas) to go out of oven of the gas-burner space heaters directly without delivering its heat to the space of favorite environment like a room. These snags cause a excess circulating that helps hot air deliver its heat to the space of favorite environment. It means the exhaust air temperature will be decreased then when there are no snags. This is the aim of this essay to use maximum potential energy of the natural gas to make heat. In this study, by the help of a finite volume software (FLUENT) consumption of the gas-burner space heaters is simulated and optimized. At the end of this writing, by comparing the results of software and experimental results, it will be proved the authenticity of this method.
Keywords: FLUENT, Heat transfer, Oven of Gas-burner spaceheaters, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18111006 Effects of Photovoltaic System Introduction in Detached Houses with All-Electrified Residential Equipment in Japan
Authors: Qingrong Liu, Tetsuo Hayashi, Yuji Ryu
Abstract:
In this paper, in order to investigate the effects of photovoltaic system introduction to detached houses in Japan, two kinds of works were done. Firstly, the hourly generation amount of a 4.2kW photovoltaic system were simulated in 46 cities to investigate the potential of the system in different regions in Japan using a simulation model of photovoltaic system. Secondly, based on the simulated electricity generation amount, the energy saving, the environmental and the economic effect of the photovoltaic system were examined from hourly to annual timescales, based upon calculations of typical electricity, heating, cooling and hot water supply load profiles for Japanese dwellings. The above analysis was carried out using a standard year-s hourly weather data for the different city provided by the Expanded AMeDAS Weather Data issued by AIJ (Architectural Institute of Japan).Keywords: Photovoltaic system, Energy saving, Environmental effect, Japanese dwelling, Detached house.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13681005 Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes
Authors: Mohamed E. Eleshaky
Abstract:
This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction.
Keywords: Drag reduction, laminar flow in micropipes, numerical simulation, superhyrophobic surfaces, microposts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19501004 Design of Wireless Sensor Networks for Environmental Monitoring Using LoRa
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilize minimal power consumption for sensing and data transmission to the base station.
Keywords: Internet of Things, IoT, network formation, sensor nodes, SSAIL technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3851003 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD
Authors: Alaa A. Osman, Amgad M. Bayoumy, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil
Abstract:
In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Euler equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-offreedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters and wing pressure distribution during the store separation are compared for every grid size with published experimental data.
Keywords: CFD Modelling, Quasi-steady Flow, Moving-body Trajectories, Transonic Store Separation, Moving-body Trajectories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29871002 Flight Control of TUAV with Coaxial Rotor and Ducted Fan Configuration by NARMA-L2 Controllers for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai, Boris Gordon
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for an unmanned helicopter model with coaxial rotor and ducted fan configuration. This control strategy for chosen model of TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Coaxial rotors, ducted fan, NARMA-L2 neurocontroller, situational awareness, tactical unmanned aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23131001 Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction
Authors: Gopi Ram, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal
Abstract:
A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO and SA applied to the same problem.
Keywords: Circular arrays, First null beam width, Side lobe level, FFA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31761000 Complex Dynamics of Bertrand Duopoly Games with Bounded Rationality
Authors: Jixiang Zhang, Guocheng Wang
Abstract:
A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.
Keywords: Bertrand duopoly model, Discrete dynamical system, Heterogeneous expectations, Nash equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599999 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting
Authors: I. Falconett, K. Nagasaka
Abstract:
This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.
Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537998 New Gate Stack Double Diffusion MOSFET Design to Improve the Electrical Performances for Power Applications
Authors: Z. Dibi, F. Djeffal, N. Lakhdar
Abstract:
In this paper, we have developed an explicit analytical drain current model comprising surface channel potential and threshold voltage in order to explain the advantages of the proposed Gate Stack Double Diffusion (GSDD) MOSFET design over the conventional MOSFET with the same geometric specifications that allow us to use the benefits of the incorporation of the high-k layer between the oxide layer and gate metal aspect on the immunity of the proposed design against the self-heating effects. In order to show the efficiency of our proposed structure, we propose the simulation of the power chopper circuit. The use of the proposed structure to design a power chopper circuit has showed that the (GSDD) MOSFET can improve the working of the circuit in terms of power dissipation and self-heating effect immunity. The results so obtained are in close proximity with the 2D simulated results thus confirming the validity of the proposed model.Keywords: Double-Diffusion, modeling, MOSFET, power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585997 Natural Convection in a Porous Medium Cavity with an Applied Vertical Magnetic Field using Lattice Boltzmann Method
Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour
Abstract:
We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831996 Modeling and Analysis of an SIRS Epidemic Model with Effect of Awareness Programs by Media
Authors: Navjot Kaur, Mini Ghosh, S.S. Bhatia
Abstract:
This paper proposes and analyzes an SIRS epidemic model incorporating the effects of the awareness programs driven by the media. Media and media driven awareness programs play a promising role in disseminating the information about outbreak of any disease across the globe. This motivates people to take precautionary measures and guides the infected individuals to get hospitalized. Timely hospitalization helps to reduce diagnostic delays and hence results in fast recovery of infected individuals. The aim of this study is to investigate the impact of the media on the spread and control of infectious diseases. This model is analyzed using stability theory of differential equations. The sensitivity of parameters has been discussed and it has been found that the awareness programs driven by the media have positive impact in reducing the infection prevalence of the infective population in the region under consideration.
Keywords: Infectious diseases, SIRS model, Media, Stability theory, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914995 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System
Authors: Ahmad Rouhani, Masoud Jabbari, Sima Honarmand
Abstract:
This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technical and economic. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.Keywords: Hybrid energy system, optimum sizing, power management, TLBO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561994 Lattice Boltzmann Simulation of Natural Convection Heat Transfer in an Inclined Open Ended Cavity
Authors: M.Jafari, A.Naysari, K.Bodaghi
Abstract:
In the present study, the lattice Boltzmann Method (LBM) is applied for simulating of Natural Convection in an inclined open ended cavity. The cavity horizontal walls are insulated while the west wall is maintained at a uniform temperature higher than the ambient. Prandtl number is fixed to 0.71 (air) while Rayligh numbers, aspect ratio of the cavity are changed in the range of 103 to 104 and of 1-4, respectively. The numerical code is validated for the previously results for open ended cavities, and then the results of an inclined open ended cavity for various angles of rotating open ended cavity are presented. Result shows by increasing of aspect ratio, the average Nusselt number on hot wall decreases for all rotation angles. When gravity acceleration direction is opposite of standard gravity direction the convection heat transfer has a manner same as conduction.
Keywords: Lattice Boltzmann Method, Open Ended Cavity, Natural Convection, Inclined Cavity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586993 Trajectory-Based Modified Policy Iteration
Abstract:
This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446992 Using Mixed Amine Solution for Gas Sweetening
Authors: Zare Aliabadi, Hassan, Mirzaei, Somaye
Abstract:
The use of amine mixtures employing methyldiethanolamine (MDEA), monoethanolamine (MEA), and diethanolamine (DEA) have been investigated for a variety of cases using a process simulation program called HYSYS. The results show that, at high pressures, amine mixtures have little or no advantage in the cases studied. As the pressure is lowered, it becomes more difficult for MDEA to meet residual gas requirements and mixtures can usually improve plant performance. Since the CO2 reaction rate with the primary and secondary amines is much faster than with MDEA, the addition of small amounts of primary or secondary amines to an MDEA based solution should greatly improve the overall reaction rate of CO2 with the amine solution. The addition of MEA caused the CO2 to be absorbed more strongly in the upper portion of the column than for MDEA along. On the other hand, raising the concentration for MEA to 11%wt, CO2 is almost completely absorbed in the lower portion of the column. The addition of MEA would be most advantageous. Thus, in areas where MDEA cannot meet the residual gas requirements, the use of amine mixtures can usually improve the plant performance.Keywords: CO2, H2S, Methyldiethanolamine, Monoethanolamine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3766991 Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments
Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa
Abstract:
Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.Keywords: Soil-Structure Interaction, RC pile, RC Tunnel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287990 Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks.Keywords: Conventional Neural Networks, Fast Neural Networks, Cross Correlation in the Frequency Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480989 A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram
Authors: Ramesh Rajagopalan, Adam Dahlstrom
Abstract:
Noise removal techniques play a vital role in the performance of electrocardiographic (ECG) signal processing systems. ECG signals can be corrupted by various kinds of noise such as baseline wander noise, electromyographic interference, and powerline interference. One of the significant challenges in ECG signal processing is the degradation caused by additive 50 or 60 Hz powerline interference. This work investigates the removal of power line interference and suppression of transient response for filtering noise corrupted ECG signals. We demonstrate the effectiveness of infinite impulse response (IIR) notch filter with time varying pole radius for improving the transient behavior. The temporary change in the pole radius of the filter diminishes the transient behavior. Simulation results show that the proposed IIR filter with time varying pole radius outperforms traditional IIR notch filters in terms of mean square error and transient suppression.
Keywords: Notch filter, ECG, transient, pole radius.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3193988 Comparison between Haar and Daubechies Wavelet Transformions on FPGA Technology
Authors: Mohamed I. Mahmoud, Moawad I. M. Dessouky, Salah Deyab, Fatma H. Elfouly
Abstract:
Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the comparison between the Haar and Daubechies wavelets is investigated. The Bit Error Rat (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. It is seen that the BER using Daubechies wavelet techniques is less than Haar wavelet. The design procedure has been explained and designed using the stat-of-art Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.
Keywords: Daubechies wavelet, discrete wavelet transform, Haar wavelet, Xilinx FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4845987 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System
Authors: E. E. El-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou. M. El-Refay, Mohammed El-Zefery
Abstract:
Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of threephase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.
Keywords: Photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257986 Comparative Study of Tensile Properties of Cortical Bone Using Sub-size Specimens and Finite Element Simulation
Authors: N. K. Sharma, J. Nayak, D. K. Sehgal, R. K. Pandey
Abstract:
Bone material is treated as heterogeneous and hierarchical in nature therefore appropriate size of bone specimen is required to analyze its tensile properties at a particular hierarchical level. Tensile properties of cortical bone are important to investigate the effect of drug treatment, disease and aging as well as for development of computational and analytical models. In the present study tensile properties of buffalo as well as goat femoral and tibiae cortical bone are analyzed using sub-size tensile specimens. Femoral cortical bone was found to be stronger in tension as compared to the tibiae cortical bone and the tensile properties obtained using sub-size specimens show close resemblance with the tensile properties of full-size cortical specimens. A two dimensional finite element (FE) modal was also applied to simulate the tensile behavior of sub-size specimens. Good agreement between experimental and FE model was obtained for sub-size tensile specimens of cortical bone.
Keywords: Cortical bone, sub-size specimen, full size specimen, finite element modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525