Search results for: Travel Time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6653

Search results for: Travel Time

4283 The Application of Hadamard Matrixes in the SNR Enhancement of Optical Time-Domain Reflectometry(OTDR)

Authors: Mingyu Zhong, Yi Xie

Abstract:

Results in one field necessarily give insight into the others, and all have much potential for scientific and technological application. The Hadamard-transform technique once been applied to the spectrometry also has its use in the SNR Enhancement of OTDR. In this report, a new set of code (Simplex-codes) is discussed and where the addition gain of SNR come from is implied.

Keywords: Hadamard-transform, matrixes, averaging, opticaltime-domain reflectometry (OTDR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
4282 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: H. Anıl, G. Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203
4281 Space Telemetry Anomaly Detection Based on Statistical PCA Algorithm

Authors: B. Nassar, W. Hussein, M. Mokhtar

Abstract:

The critical concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission, but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the problem above coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions, and the results show that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: Space telemetry monitoring, multivariate analysis, PCA algorithm, space operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
4280 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks

Authors: Y. Harold Robinson, M. Rajaram

Abstract:

Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.

Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
4279 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
4278 Electrical Characterization and Reliability Analysis of HfO2-TiO2-Al MOSCAPs

Authors: Shibesh Dutta, Sivaramakrishnan R., Sundar Gopalan, Balakrishnan Shankar

Abstract:

MOSCAPs of various combinations of Hafnium oxide and Titanium oxide of varying thickness with Aluminum as gate electrode have been fabricated and electrically characterized. The effects of voltage stress on the I-V characteristics for prolonged time durations have been studied and compared. Results showed hard breakdown and negligible degradation of reliability under stress.

Keywords: breakdown, MOSCAP, voltage stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
4277 Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off

Authors: Iqbal Hossain, Dr. Monzur Imteaz, Dr. Shirley Gato-Trinidad, Prof. Abdallah Shanableh

Abstract:

Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.

Keywords: Catchment, continuous pollutants build-up, pollutants wash-off, runoff, runoff water quality model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
4276 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis

Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic

Abstract:

What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.

Keywords: Political tendency, prediction, sentiment analysis, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
4275 A Robust Method for Finding Nearest-Neighbor using Hexagon Cells

Authors: Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth

Abstract:

In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.

Keywords: Hexagon cells, k-nearest neighbors, Nearest Neighbor, Pattern recognition, Query pattern, Virtually grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
4274 Chikungunya Protease Domain–High Throughput Virtual Screening

Authors: Surender Singh Jadav, Venkatesan Jayaprakash, Arijit Basu, Barij Nayan Sinha

Abstract:

Chikungunya virus (CHICKV) is an arboviruses belonging to family Tagoviridae and is transmitted to human through by mosquito (Aedes aegypti and Aedes albopictus) bite. A large outbreak of chikungunya has been reported in India between 2006 and 2007, along with several other countries from South-East Asia and for the first time in Europe. It was for the first time that the CHICKV outbreak has been reported with mortality from Reunion Island and increased mortality from Asian countries. CHICKV affects all age groups, and currently there are no specific drugs or vaccine to cure the disease. The need of antiviral agents for the treatment of CHICKV infection and the success of virtual screening against many therapeutically valuable targets led us to carry out the structure based drug design against Chikungunya nSP2 protease (PDB: 3TRK). Highthroughput virtual screening of publicly available databases, ZINC12 and BindingDB, has been carried out using the Openeye tools and Schrodinger LLC software packages. Openeye Filter program has been used to filter the database and the filtered outputs were docked using HTVS protocol implemented in GLIDE package of Schrodinger LLC. The top HITS were further used for enriching the similar molecules from the database through vROCS; a shape based screening protocol implemented in Openeye. The approach adopted has provided different scaffolds as HITS against CHICKV protease. Three scaffolds: Indole, Pyrazole and Sulphone derivatives were selected based on the docking score and synthetic feasibility. Derivatives of Pyrazole were synthesized and submitted for antiviral screening against CHICKV.

Keywords: Chikungunya, nsP2 protease, ADME filter, HTVS, Docking, Active site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
4273 A Study of RSCMAC Enhanced GPS Dynamic Positioning

Authors: Ching-Tsan Chiang, Sheng-Jie Yang, Jing-Kai Huang

Abstract:

The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.

Keywords: Dynamic Error, GPS, Prediction, RSCMAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
4272 Evaluation of Energy and Environmental Aspects of Reduced Tillage Systems Applied in Maize Cultivation

Authors: E. Sarauskis, L. Masilionyte, Z. Kriauciuniene, K. Romaneckas, S. Buragiene

Abstract:

In maize growing technologies, tillage technological operations are the most time-consuming and require the greatest fuel input. Substitution of conventional tillage, involving deep ploughing, by other reduced tillage methods can reduce technological production costs, diminish soil degradation and environmental pollution from greenhouse gas emissions, as well as improve economic competitiveness of agricultural produce.

Experiments designed to assess energy and environmental aspects associated with different reduced tillage systems, applied in maize cultivation were conducted at Aleksandras Stulginskis University taking into account Lithuania’s economic and climate conditions. The study involved 5 tillage treatments: deep ploughing (DP, control), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC) and no-tillage (NT).

Our experimental evidence suggests that with the application of reduced tillage systems it is feasible to reduce fuel consumption by 13-58% and working time input by 8.4% to nearly 3-fold, to reduce the cost price of maize cultivation technological operations, decrease environmental pollution with CO2 gas by 30 to 146 kg ha-1, compared with the deep ploughing.

Keywords: Reduced tillage, energy and environmental assessment, fuel consumption, CO2 emission, maize.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
4271 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

Climate change and environmental pressures are major international issues nowadays. It is time when governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies. This is the prime time to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to its engineering, financial, environmental and ecological benefits. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate. Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3889 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: Waste glass, recycling, environmentally friendly, glass aggregate, strength development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7923
4270 Quality Fed-Batch Bioprocess Control A Case Study

Authors: Mihai Caramihai, Irina Severin

Abstract:

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Keywords: Fed batch bioprocess, mass-balance model, fuzzy control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
4269 Measurement of Innovation Performance

Authors: M. Chobotová, Ž. Rylková

Abstract:

Time full of changes which is associated with globalization, tougher competition, changes in the structures of markets and economic downturn, that all force companies to think about their competitive advantages. These changes can bring the company a competitive advantage and that can help improve competitive position in the market. Policy of the European Union is focused on the fast growing innovative companies which quickly respond to market demands and consequently increase its competitiveness. To meet those objectives companies need the right conditions and support of their state.

Keywords: Innovation, performance, measurements metrics, indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020
4268 A Localized Interpolation Method Using Radial Basis Functions

Authors: Mehdi Tatari

Abstract:

Finding the interpolation function of a given set of nodes is an important problem in scientific computing. In this work a kind of localization is introduced using the radial basis functions which finds a sufficiently smooth solution without consuming large amount of time and computer memory. Some examples will be presented to show the efficiency of the new method.

Keywords: Radial basis functions, local interpolation method, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
4267 The Relationship between Motivation for Physical Activity and Level of Physical Activity over Time

Authors: Keyvan Molanorouzi, Selina Khoo, Tony Morris

Abstract:

In recent years, there has been a decline in physical activity among adults. Motivation has been shown to be a crucial factor in maintaining physical activity. The purpose of this study was to whether PA motives measured by the Physical Activity and Leisure Motivation Scale PALMS predicted the actual amount of PA at a later time to provide evidence for the construct validity of the PALMS. A quantitative, cross-sectional descriptive research design was employed. The Demographic Form, PALMS, and International Physical Activity Questionnaire Short form (IPAQ-S) questionnaires were used to assess motives and amount for physical activity in adults on two occasions. A sample of 489 male undergraduate students aged 18 to 25 years (mean ±SD; 22.30±8.13 years) took part in the study. Participants were divided into three types of activities, namely exercise, racquet sport, and team sports and female participants only took part in one type of activity, namely team sports. After 14 weeks, all 489 undergraduate students who had filled in the initial questionnaire (Occasion 1) received the questionnaire via email (Occasion 2). Of the 489 students, 378 males emailed back the completed questionnaire. The results showed that not only were pertinent sub-scales of PALMS positively related to amount of physical activity, but separate regression analyses showed the positive predictive effect of PALMS motives for amount of physical activity for each type of physical activity among participants. This study supported the construct validity of the PALMS by showing that the motives measured by PALMS did predict amount of PA. This information can be obtained to match people with specific sport or activity which in turn could potentially promote longer adherence to the specific activity.

Keywords: Physical activity, motivation, the level of physical activity, types of physical activities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3596
4266 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

Authors: Isao Taguchi, Yasuo Sugai

Abstract:

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
4265 Heuristics Analysis for Distributed Scheduling using MONARC Simulation Tool

Authors: Florin Pop

Abstract:

Simulation is a very powerful method used for highperformance and high-quality design in distributed system, and now maybe the only one, considering the heterogeneity, complexity and cost of distributed systems. In Grid environments, foe example, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. In addition, Grid test-beds are limited and creating an adequately-sized test-bed is expensive and time consuming. Scalability, reliability and fault-tolerance become important requirements for distributed systems in order to support distributed computation. A distributed system with such characteristics is called dependable. Large environments, like Cloud, offer unique advantages, such as low cost, dependability and satisfy QoS for all users. Resource management in large environments address performant scheduling algorithm guided by QoS constrains. This paper presents the performance evaluation of scheduling heuristics guided by different optimization criteria. The algorithms for distributed scheduling are analyzed in order to satisfy users constrains considering in the same time independent capabilities of resources. This analysis acts like a profiling step for algorithm calibration. The performance evaluation is based on simulation. The simulator is MONARC, a powerful tool for large scale distributed systems simulation. The novelty of this paper consists in synthetic analysis results that offer guidelines for scheduler service configuration and sustain the empirical-based decision. The results could be used in decisions regarding optimizations to existing Grid DAG Scheduling and for selecting the proper algorithm for DAG scheduling in various actual situations.

Keywords: Scheduling, Simulation, Performance Evaluation, QoS, Distributed Systems, MONARC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
4264 Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS

Authors: K. Mohammed, M. Agarwal, J. Mewman, Y. Ren

Abstract:

An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (Citrus aurantifolia). The volatile organic compounds of healthy and infested lime fruit with California red scale Aonidiella aurantii were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by A. aurantii infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques.

Keywords: Lime fruit, Citrus aurantifolia, California red scale, Aonidiella aurantii, VOCs, HS-SPME/GC-FID-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
4263 Computational Method for Annotation of Protein Sequence According to Gene Ontology Terms

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias

Abstract:

Annotation of a protein sequence is pivotal for the understanding of its function. Accuracy of manual annotation provided by curators is still questionable by having lesser evidence strength and yet a hard task and time consuming. A number of computational methods including tools have been developed to tackle this challenging task. However, they require high-cost hardware, are difficult to be setup by the bioscientists, or depend on time intensive and blind sequence similarity search like Basic Local Alignment Search Tool. This paper introduces a new method of assigning highly correlated Gene Ontology terms of annotated protein sequences to partially annotated or newly discovered protein sequences. This method is fully based on Gene Ontology data and annotations. Two problems had been identified to achieve this method. The first problem relates to splitting the single monolithic Gene Ontology RDF/XML file into a set of smaller files that can be easy to assess and process. Thus, these files can be enriched with protein sequences and Inferred from Electronic Annotation evidence associations. The second problem involves searching for a set of semantically similar Gene Ontology terms to a given query. The details of macro and micro problems involved and their solutions including objective of this study are described. This paper also describes the protein sequence annotation and the Gene Ontology. The methodology of this study and Gene Ontology based protein sequence annotation tool namely extended UTMGO is presented. Furthermore, its basic version which is a Gene Ontology browser that is based on semantic similarity search is also introduced.

Keywords: automatic clustering, bioinformatics tool, gene ontology, protein sequence annotation, semantic similarity search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3127
4262 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modeling and Solving

Authors: Yasin Tadayonrad, Alassane Ballé Ndiaye

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading/unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is the loading/unloading capacity in each source/destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods (FMCG) industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on Python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: Supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 523
4261 Accuracy of Peak Demand Estimates for Office Buildings Using eQUEST

Authors: Mahdiyeh Zafaranchi, Ethan S. Cantor, William T. Riddell, Jess W. Everett

Abstract:

The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, US. NJ DMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA.

Keywords: Building Energy Modeling, eQUEST, peak demand, smart meters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177
4260 Efficient Real-time Remote Data Propagation Mechanism for a Component-Based Approach to Distributed Manufacturing

Authors: V. Barot, S. McLeod, R. Harrison, A. A. West

Abstract:

Manufacturing Industries face a crucial change as products and processes are required to, easily and efficiently, be reconfigurable and reusable. In order to stay competitive and flexible, situations also demand distribution of enterprises globally, which requires implementation of efficient communication strategies. A prototype system called the “Broadcaster" has been developed with an assumption that the control environment description has been engineered using the Component-based system paradigm. This prototype distributes information to a number of globally distributed partners via an adoption of the circular-based data processing mechanism. The work highlighted in this paper includes the implementation of this mechanism in the domain of the manufacturing industry. The proposed solution enables real-time remote propagation of machine information to a number of distributed supply chain client resources such as a HMI, VRML-based 3D views and remote client instances regardless of their distribution nature and/ or their mechanisms. This approach is presented together with a set of evaluation results. Authors- main concentration surrounds the reliability and the performance metric of the adopted approach. Performance evaluation is carried out in terms of the response times taken to process the data in this domain and compared with an alternative data processing implementation such as the linear queue mechanism. Based on the evaluation results obtained, authors justify the benefits achieved from this proposed implementation and highlight any further research work that is to be carried out.

Keywords: Broadcaster, circular buffer, Component-based, distributed manufacturing, remote data propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
4259 Evaluation Techniques of Photography in Visual Communications in Iran

Authors: Firouzeh Keshavarzi

Abstract:

Although a picture can be automatically a graphic work, but especially in the field of graphics and images based on the idea of advertising and graphic design will be prepared and photographers to realize the design using his own knowledge and skills to help does. It is evident that knowledge of photography, photographer and designer of the facilities, fields of reaching a higher level of quality offers. At the same time do not have a graphic designer is also skilled photographer, but can execute your idea may delegate to an expert photographer. Using technology and methods in all fields of photography, graphic art may be applicable. But most of its application in Iran, in works such as packaging, posters, Bill Board, advertising, brochures and catalogs are. In this study, we review how the images and techniques in the chart should be used in Iranian graphic photo what impact has left. Using photography techniques and procedures can be designed and helped advance the goals graphic. Technique could not determine the idea. But what is important to think about design and photography and his creativity can flourish as a tool to be effective graphic designer in mind. Computer software to help it's very promotes creativity techniques shall graphic designer but also it is as a tool. Using images in various fields, especially graphic arts and only because it is not being documented, but applications are beautiful. As to his photographic style from today is graphics. Graphic works try to affect impacts on their audience. Hence the photo as an important factor is attention. The other hand saw the man with the extent of forgiving and understanding people's image, instead of using the word to your files, allows large messages and concepts should be sent in the shortest time. Posters, advertisements, brochures, catalog and packaging products very diverse agricultural, industrial and food could not be self-image. Today, the use of graphic images for a big score and the photos to richen the role graphic design plays a major.

Keywords: Photo, Photography Techniques, Contacts, GraphicDesigner, Visual Communications, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
4258 Bioprocess Intelligent Control: A Case Study

Authors: Mihai Caramihai Ana A Chirvase, Irina Severin

Abstract:

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Keywords: Fed batch bioprocess, mass-balance model, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
4257 Behavior of Ice Melting in Natural Convention

Authors: N. Dizadji, P. Entezar

Abstract:

In this paper, the ice melting in rectangular, cylindrical and conical forms, which are erected vertically against air flow, are experimentally studied in the free convection regime.The results obtained are: Nusslet Number, heat transfer coefficient andGrashof Number, and the variations of the said numbers in relation to the time. The variations of ice slab area and volume are measured, too.

Keywords: Nusselt Number, Heat Transfer, Grashof Number, Heat Transfer Coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
4256 Entropy Measures on Neutrosophic Soft Sets and Its Application in Multi Attribute Decision Making

Authors: I. Arockiarani

Abstract:

The focus of the paper is to furnish the entropy measure for a neutrosophic set and neutrosophic soft set which is a measure of uncertainty and it permeates discourse and system. Various characterization of entropy measures are derived. Further we exemplify this concept by applying entropy in various real time decision making problems.

Keywords: Entropy measure, Hausdorff distance, neutrosophic set, soft set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
4255 A Combinatorial Model for ECG Interpretation

Authors: Costas S. Iliopoulos, Spiros Michalakopoulos

Abstract:

A new, combinatorial model for analyzing and inter- preting an electrocardiogram (ECG) is presented. An application of the model is QRS peak detection. This is demonstrated with an online algorithm, which is shown to be space as well as time efficient. Experimental results on the MIT-BIH Arrhythmia database show that this novel approach is promising. Further uses for this approach are discussed, such as taking advantage of its small memory requirements and interpreting large amounts of pre-recorded ECG data.

Keywords: Combinatorics, ECG analysis, MIT-BIH Arrhythmia Database, QRS Detection, String Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
4254 Production Scheduling Improvements in an Automotive Sector Company

Authors: Govind Sharan Dangayach, Himanshu Bhatt

Abstract:

The paper attempts to overcome the fluctuations occurring in demand of the components in an automotive sector company. Resource and time being the strict constraints, the production is not able to match the pace of the fluctuating demand. So, we introduce some production schedules that help in meeting out the required demand. The merits and demerits of the approaches are also highlighted.

Keywords: Production scheduling, Demand rise, Capacity constrained resource (CCR), Overtime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902