%0 Journal Article
	%A T. S. Serniabat and  M. N. N. Khan and  M. F. M. Zain
	%D 2014
	%J International Journal of Civil and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 94, 2014
	%T Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction
	%U https://publications.waset.org/pdf/9999599
	%V 94
	%X Climate change and environmental pressures are
major international issues nowadays. It is time when governments,
businesses and consumers have to respond through more
environmentally friendly and aware practices, products and policies.
This is the prime time to develop alternative sustainable construction
materials, reduce greenhouse gas emissions, save energy, look to
renewable energy sources and recycled materials, and reduce waste.
The utilization of waste materials (slag, fly ash, glass beads, plastic
and so on) in concrete manufacturing is significant due to its
engineering, financial, environmental and ecological benefits. Thus,
utilization of waste materials in concrete production is very much
helpful to reach the goal of the sustainable construction. Therefore,
this study intends to use glass beads in concrete production.
The paper reports on the performance of 9 different concrete
mixes containing different ratios of glass crushed to 5 mm - 20 mm
maximum size and glass marble of 20 mm size as coarse aggregate.
Ordinary Portland cement type 1 and fine sand less than 0.5 mm were
used to produce standard concrete cylinders. Compressive strength
tests were carried out on concrete specimens at various ages. Test
results indicated that the mix having the balanced ratio of glass beads
and round marbles possess maximum compressive strength which is
3889 psi, as glass beads perform better in bond formation but have
lower strength, on the other hand marbles are strong in themselves
but not good in bonding. These mixes were prepared following a
specific W/C and aggregate ratio; more strength can be expected to
achieve from different W/C, aggregate ratios, adding admixtures like
strength increasing agents, ASR inhibitor agents etc.

	%P 1075 - 1078