
Oscillation Effect of the Multi-stage Learning for

Abstract—This paper proposes an efficient learning method for
the layered neural networks based on the selection of training data
and input characteristics of an output layer unit. Comparing to recent
neural networks; pulse neural networks, quantum neuro computation,
etc, the multilayer network is widely used due to its simple structure.
When learning objects are complicated, the problems, such as unsuc-
cessful learning or a significant time required in learning, remain
unsolved.

Focusing on the input data during the learning stage, we un-
dertook an experiment to identify the data that makes large errors
and interferes with the learning process. Our method devides the
learning process into several stages. In general, input characteristics
to an output layer unit show oscillation during learning process for
complicated problems.

The multi-stage learning method proposes by the authors for the
function approximation problems of classifying learning data in a
phased manner, focusing on their learnabilities prior to learning in
the multi layered neural network, and demonstrates validity of the
multi-stage learning method.

Specifically, this paper verifies by computer experiments that both
of learning accuracy and learning time are improved of the BP method
as a learning rule of the multi-stage learning method.

In learning, oscillatory phenomena of a learning curve serve an
important role in learning performance. The authors also discuss
the occurrence mechanisms of oscillatory phenomena in learning.
Furthermore, the authors discuss the reasons that errors of some data
remain large value even after learning, observing behaviors during
learning.

Keywords—data selection, function approximation problem, multi-
stage leaning, neural network, voluntary oscillation.

I. INTRODUCTION

T layered neural networks based on the selection of training
data and input characteristics of an output layer unit. Com-
paring to recent neural networks; pulse neural networks[1],
quantum neuro computation[2], etc, the multilayer network is
widely useddue to its simple structure. When learning objects
are complicated, the problems, such as unsuccessful learning
or a significant time required in learning, remain unsolved.

Focusing on the input data during the learning stage, we
undertook an experiment to identify the data that makes large
errors and interferes with the learning process. Our method
devides the learning process into several stages. In general,
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input characteristics to an output layer unit show oscillation
during learning process for complicated problems.

We have suggested a multi-stage learning method with the
following characteristics that are in contrast to the multi-
layered neural network[3]．

• It is clear that some learning data are difficult-to-learn
and some are easy-to-learn.

• In the multi-stage learning method, difficult-to-learn data
is given preference and simple data is added incremen-
tally.

• Learning ratios of data are not constant but are set based
on errors.

• Therefore, learning time is significantly reduced and
accuracy is increased.

• It is said that the oscillation phenomena of the learning
curve is effective for complex subjects, so some studies
force outward oscillations [4]. In the multi-stage learning
method, oscillations occur spontaneously during learning
and they play an important role in the reduction of
learning errors.

However, there are the following problems:

(1) The learning of complex functions has not been con-
cretely evaluated in cases where a simple Back-
Propagation Method (BP method) is used [5]∼ [8] and
the BP method is used in conjunction with the multi-
stage learning method.

(2) The mechanisms of the oscillation phenomena[10]that
have a major impact on learning accuracy have not been
identified.

(3) It is not clearly understood why, upon completion of
learning, some learned data has a larger percentage of
errors, compared to other learned data.

Hence, in this paper, the followings are discussed:

(1’) Learning time and accuracy for complicated functions
were weighted by using the multi-stage learning method.

(2’) Mechanisms of oscillation phenomena are analyzed by
using an updated weight vector during learning.

(3’) The reasons for learned data with a large percentage
of errors at the time of completion of learning was
discussed, relating it to oscillation phenomena.

The composition of this paper is as follows: II. will
describe the introduction of indexes that evaluate the state
of updated weight during learning, and III. will present the
effectiveness of incorporating weight updating rules into the
multi-stage learning method, through computer experiments
[11]∼ [13] where function approximation problems were used
as examples. Then, IV. will discuss the mechanisms of the
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oscillation phenomena during learning, and causes for the data
with large percentage of errors after completion of learning
[14],[15] and V. gives the conclusions.

II. INTRODUCTION OF INDEXES TO EVALUATE THE STATE

OF THE UPDATED WEIGHT DURING LEARNING, AND RULES

OF UPDATING WEIGHT.

When letting a desired signal vector against the pattern p(=
1, · · · , P ) be dp = {dp

i }(i = 1, · · · , n) and letting an output
vector be op = {op

i }(i = 1, · · · , n), an output error vector εp
rr

is εp
rr = dp − op. Also, let a weight coefficient matrix at the

epoch t during learning be W (t) = {Wji(t)}. The Wji(t) is
a weight coefficient from unit i to unit j.

Here, learning ratios[3] in according to errors will be
described. The learning ratio ηp against the input pattern p
will be set as follows:

ηp = η
(|εp

rr|)2
Ē2

(p = 1, · · · , P ), (1)

Ē2 =
1
P

P∑

p=1

(|εp
rr|)2. (2)

In the formulas, η (> 0) means a standard learning coef-
ficient, |εp

rr| is the magnitude of an output error vector and
Ē2 presents the average of square errors. In the multi-stage
learning method, a batch-learning method where the amount
of updated weight at an epoch is calculated by using a learning
ratio according to each input pattern is employed.

In the t epoch, let the set of patterns where absolute errors
more increase than the last epoch or absolute errors are equal
to the last epoch be P +(t),

P +(t) ≡ {p : |εp
rr(t)| − |εp

rr(t − 1)| ≥ 0}. (3)

Similarly, let the set of patterns where absolute errors decrease
be P−(t),

P−(t) ≡ {p : |εp
rr(t)| − |εp

rr(t − 1)| < 0}. (4)

The number of all patterns is:

∀t > 0 |P +(t)| + |P−(t)| = P. (5)

In the formulas (1) through (4), the mark, | · |, expresses the
magnitude of error vectors and the mark | · | in the formula (5)
indicates the number of elements of the set. In the computer
experiments of this paper, updating weight coefficients are
batched. Hence, updating weight at the t epoch is:

W (t + 1) = W (t) + ΔW (t). (6)

Also, let the total amount of updated weight which belongs
to P +(t) be ΔW +(t) and the amount of updated weight
which belongs to P−(t) be ΔW−(t), the formulas are:

ΔW +(t) ≡
∑

p∈P +

ΔW p(t), (7)

ΔW−(t) ≡
∑

p∈P −
ΔW p(t). (8)

Here, ΔW +(t) and ΔW−(t) are called error increase vectors
and error decrease vectors respectively (the number of ele-
ments for both vectors are n). The amount of updated weight
coefficients of the formula (6）relates to

ΔW (t) = ΔW +(t) + ΔW−(t). (9)

III. COMPUTER EXPERIMENTS BY USING FUNCTION

APPROXIMATION PROBLEMS AS AN EXAMPLE

In this section, computer experiments will be carried out
by using function approximation problems as examples. The
formulas (1) through (4) are expressed by using vectors as the
general case where there are several units of the output layer;
however, in function approximation problems, the number of
output units is one, so a scalar is used, instead of vectors.

The Schwefel’s function, Rastrigin function and Ridge func-
tion, all of which are frequently used in function optimization
problems, are used as examples in this paper. Table I shows
these functions.

The reason why the range of variables between function
optimization problems and function approximation problems
differs is that the range of learning is narrowed for learning
in function approximation problems, as learning sometimes
does not progress even if all of the methods are used. Also, in
function optimization problems, the number of variables can
be freely selected, but this paper uses two variables, x and y.

A. Learning data

For Table I(a), (b) and (c), each step size of x and y
directions was set to 5.0, 0.1, and 1.2, areas were divided
into three grids: 11× 11 (121 grid points), 17× 17 (289 grid
points) and 11 × 11 (121 grid points). Values against these
grid points are the set of the learning data.

Basically, it is difficult to learn data with larger absolute
values, or data where the distance between the learning data
is far, although the distance between input patterns are close
[3]. To selectively learn this data, it is arranged in order of
difficulty. This arranged data is equally divided into three
groups. In the 1st step, the 1st group is learned. In the 2nd
step, the 2nd group is added and all data is learned in the 3rd
step.

Selection methods of learning data will be described below
by using the Rastrigin function as an example, where, due to
the difficulty of the subject, many experiments were carried
out.

In function approximation problems, partial differential val-
ues can be used as a substitute for selection of data where the
distance between learning data is far although the distance
between input patterns are close. For selecting learning data
of the Rastrigin function, partial differential values of x and
y directions, fx(x, y) and fy(x, y), were used. In the 1st step,
24 pieces of learning data that satisfied |f(x, y)| ≥ 0.90, 34
pieces of learning data that satisfied |f(x, y)| ≥ 0.90 and 34
pieces of learning data that satisfied |fy(x, y)| ≥ 60.3 were
included. Among the data, 2 pieces of data overlapped and
90 pieces of data were (31.1% of the all data) selected. In
the 2nd step, 58.1% (168 pieces of data) of all the data was
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TABLE I
LEARNING FUNCTIONS

(a)Schwefels Function
　 f(x, y) = −x sin

√
|x| − y sin

√
|y|

　　 (−30.0 ≤ x ≤ 30.0Γ − 30.0 ≤ y ≤ 30.0)
(−47.95 ≤ f(x, y) ≤ 47.95)

(b) Rastrigin Function
　 f(x, y) = x2 − 10 cos (2πx) + y2 − 10 cos (2πy)

　　 (−0.8 ≤ x ≤ 0.8Γ − 0.8 ≤ y ≤ 0.8)
(−20.0 ≤ f(x, y) ≤ 20.5)

(c)Ridge Function
　 f(x, y) = 2x2 + 2xy + y2

　　 (−6.0 ≤ x ≤ 6.0,−6.0 ≤ y ≤ 6.0)
(0.0 ≤ f(x, y) ≤ 180.0)

selected. In the data, 52 pieces of learning data that satisfied
|f(x, y)| ≥ 0.80, 68 pieces of learning data that satisfied
|fx(x, y)| ≥ 60.1 and 68 pieces of learning data that satisfied
|fy(x, y)| ≥ 60.1 were included. Out of the data, 20 pieces of
data overlapped and the total pieces of data was 168. In the
3rd step, all pieces of learning data were used.

The same methods were used for selecting learning data for
the Schwefel’s function and the Ridge function.

B. Comparison methods and conditions for experiments

To validate effectiveness of the multi-stage learning method,
the BP method and a case where the BP method was applied as
an updating weight of the multi-stage learning method, were
compared in the computer experiment. In experiments for the
multi-stage learning method, the same weight updating rules
were employed from the 1st step through the 3rd step.

The neutral network composition was a feed-forward-type
three-layered network which is comprised of two elements in
the input layer, nine elements in the middle layer and one
element in the output layer, by using a sigmoid function. The
number of elements in the middle layer was determined based
on the preliminary experiments. In addition, a batch updating
method at every epoch, as described in section II , was used
for updating weight coefficients.

For a root mean square error (“RMSE”), which evaluates
the learning results, the average value of five initial values of
weight coefficients set by using values against the learning
data, was used. The initial value of a weight coefficient was
randomly set in the range of [-0.01, 0.01]. The number of
learning in the suggested method was 7000 epochs in total,
comprising of 2333 epochs for the 1st stage, 2333 epochs for
the 2nd stage and 2334 epochs for the 3rd stage. In the BP
method, all pieces of learning data were always used in all
7000 epochs. The specification of the computer used for the
experiment was as follows: OS: Windows XP, CPU: Pentium
4, 3.0GHz, RAM: 2GB.

C. Computer experiment results and discussion

Table II and III show the accuracy and learning time in cases
where the BP method was incorporated into the multi-stage
learning method and where the BP method was used alone
against the Ridgefunction, Rastrigin function, and Schwefels
function. The mark, “+”, of the multi-stage learning method in

TABLE II
RMSE FOR MULTI-STAGE LEARNING AND TRADITIONAL METHODS IN

LEARNING OF THREE FUNCTIONS.

Function Method
+BP BP

Ridge mean 0.107 0.241
Max 0.235 0.243
Min 0.038 0.234
Rastrigin mean 0.071 0.259
Max 0.095 0.483
Min 0.039 0.193
Schwefels mean 0.126 0.295
Max 0.134 0.343
Min 0.127 0.244

TABLE III
LEARNING TIME FOR MULTI-STAGE LEARNING AND TRADITIONAL

METHODS IN LEARNING OF THREE FUNCTIONS.

Function Method
+BP BP

Ridge 419 620
Rastrigin 1204 1956
Schwefels 574 966

the Tables indicates the BP method incorporated into the multi-
stage learning method, and the values are from the results
of five experiments where the initial values of weight were
randomly set. The accuracy of learning was evaluated by the
RMSE.

First, the accuracy of learning will be described. According
to Table II, for the Ridge function and Rastrigin function,
errors are fewer in the cases where the BP method was in-
corporated into the multi-stage learning method. These results
validate that incorporating the BP into the multi-stage learning
method is effective.

From Table II, errors of the Schwefel’s function decreases
when the +BP method is used.

Next, the learning time will be examined. From Table III,
the learning time when the BP method was incorporated into
the multi-stage leaning method was 59% to 68% compared
to that of when the BP method was not incorporated into the
multi-stage learning method. These values correspond to the
values in the cases of s = 3 against the estimated formula s+1

2s
in the s step of the reference [3].

Fig. 1 and 2 show the typical examples of characteristics
of the input into the elements in the output layer in the 3rd
step during learning. These Figures present the input into the
elements in the output layer, that is, the summation of the
input from elements in the middle layer through weight, when
one piece of learning data was selected and fixed at the start
of learning, and the learning data was input at each epoch.
The horizontal axis indicates the number of epochs and the
vertical axis is the value input into the elements in the output
layer. On the number of epochs of the horizontal axis, the final
epoch of the 2nd step is set to 0.

The RMSE values at the time of completion of learning
against the characteristics shown in Fig.1 and Fig. 2 were
0.206 and 0.039 respectively.

Fig. 1 expresses the characteristics of the BP method
against the Rastrigin function. Although the method used is
not the multi-stage learning method, the epoch that is equal to
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function, η = 0.8).

function, η = 0.8).

the final epoch in the 2nd stage is set to zero for the number
of epochs on the horizontal axis. The characteristics of Fig.1
are that irregular large vibrations continue until the last. The
RMSE value after the learning was 0.206, which is relatively
large, and this is an example of when learning fails.

Fig. 2 shows the characteristics of +BP against the Rastrigin
function. The oscillation phenomena where irregular vibration
is added to the regular oscillation continue.

D. BP method and oscillation effectiveness

When the learning ratio is decreased in the BP method, the
learning curve vibrates similar to that shown in Fig. 1, but its
amplitude becomes smaller. Furthermore, when the learning
ratio is greatly decreased, the vibration stops; however, errors
are large regardless of whether there is vibration or not, and the
Ridge function and Rastrigin function cannot be successfully
learned.

Also, in the multi-stage learning method, the learning ratio
η (see the formula (1)) was reduced, the oscillation stopped, as
in the BP method, but successful learning did not take place.
For example, when the +BP method was applied with the
learning ratio of η = 0.05 to the Rastrigin function learning,
oscillation did not occur during learning, but the RMSE value
was 0.135, which means a large error. In contrast with this
result, in learning where the learning ratio of η = 0.80 was

employed, the oscillation phenomena occurred and the RMSE
value is 0.071 according to Table II. The computer experiments
demonstrated that the RMSE values were 0.1 or smaller when
the learning ratio was in the range of η = 0.2 ∼ 0.9.

From the above statement, as a learning subject becomes
more complicated, the vibration phenomena play an increas-
ingly important role in learning. Therefore, inertial items
which can suppress vibration are not incorporated into the
multi-stage learning method [3]. The vibration during learning
occurs spontaneously, without external stimulus. The cause of
the spontaneous occurrence of the vibration phenomena will
be discussed in IV..

IV. MECHANISMS OF OSCILLATION OCCURRENCE AND

LEARNING BEHAVIORS OF DATA WITH LARGE ERRORS

EVEN AFTER COMPLETION OF LEARNING

A. Oscillation state and non-oscillation state

As presented in Fig.1 and Fig. 2, there are various types
of oscillation phenomena occurring in the characteristics of
the input into elements in the output layer. Many experiments
have demonstrated cases where the oscillation state changed
to the non-oscillation state and vice versa. Fig. 3 shows the
outline of typical changes of the magnitude and directions of
ΔW +(t) and ΔW−(t) when the oscillation state changes
to the non-oscillation state and vice versa. The direction of
the resultant vector ΔW (t) is drawn with reference to its

facing right. For the vibration state, |ΔW +
(t)|

|ΔW −
(t)| < 1 and

|ΔW +
(t)|

|ΔW −
(t)| > 1 are repeated. When the learning state is stable

under a non-oscillation state, the entire errors monotonically

decrease, resulting in |ΔW +
(t)|

|ΔW −
(t)| < 1. Error reduction vectors

effectively work all the time. Under the non-oscillation state,
the number of error increase patterns |P +(t)| and the number
of error reduction patterns |P−(t)| change little, even though

the epoch progresses and the relationship of |P +
(t)|

|P −
(t)| ≤ 1 is

maintained.
In Fig. 3, a1 indicates the case of |ΔW +(t)| > |ΔW−(t)|,

a2, conversely, means the case of |ΔW−(t)| > |ΔW +(t)|,
and a3 and a4 show that |ΔW (t)| is smaller against a1 and a2.
In a5, the oscillation state is |ΔW +(t)| ≈ 0, and |ΔW−(t)|
and |ΔW (t)| correspond to each other. When the learning
curve does not oscillate, the decrease vector is dominant, and
the magnitude of the vector is smaller. This means that this
state is maintained in the resultant vector |ΔW (t)|. In the

non-oscillation state, the relationship of |ΔW +
(t)|

|ΔW −
(t)| � 1 is

maintained and all errors monotonously decrease.

B. Occurrence of oscillation

In Fig. 3, b1∼b7 show drawings of vectors changing from
the non-oscillation state to the oscillation state. Even if ΔW is
updated to the direction of error reduction in all patters under
the non-oscillation state, it is hard to imagine that the state
continues until the end of learning. Hence, we assume that a
pattern p ∈ P +(t) occurs at an epoch t. This pattern belongs
to another pattern P−(t) and |ΔW−(t)| is dominant over

Fig. 2 Input characteristics for the +BP methods in the output unit ( Rastrigin

Fig. 1 Input characteristics for the BP methods in the output unit ( Rastrigin
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the amount of updated weight |ΔW (t)|. Therefore, weight is
corrected to the direction where errors against the pattern p
increase. So, the following states

|ΔW +(t + 1)| > |ΔW +(t)|
continue for several epochs. As clarified in the formula (1),
the learning ratios are effective when errors are raised to the
second power and the increase speed of |ΔW +(t)| is acceler-
ated. This will make the pattern p which was p ∈ P +(t) at the
epoch t be p ∈ P−(t′) at an epoch t′(> t). However, as the
error of the pattern p becomes smaller at the epoch (t′ + 1),
the pattern p becomes p ∈ P +(t′ + 1) again. These processes
are repeated, causing the vibration phenomena.

C. Learning behaviors of learning with large errors, even
after completion of learning

There are some patterns with large errors even after com-
pletion of learning. These patterns are not changed in ac-
cordance with learning methods or each learning, but some
specified patterns apply to such patterns. For instance, (x, y) =
(1, 1), (1, 15), (1, 17) apply to the patterns as to the Rastrigin
function learning. In this section, we will discuss why the
errors of the pattern p∗ do not become smaller even after
learning by using p∗ ≡ (1, 1) as an example.

For P±(t) in the formulas (3) and (4), when |P±(t)| >
|P∓(t)| (double-sign corresponds), let us call the former
the majority and the latter the minority. Generally, when
|P±(t)| > |P∓(t)|, most cases fall under |ΔW−(t)| >
|ΔW +(t)| (double-sign corresponds) as to the weigh cor-

∗
third stage in the multi-stage learning(η = 0.4).

rection. The RMSE values decrease when |ΔW−(t)| >
|ΔW +(t)|.

The pattern p∗ is data where the absolute value of the
learning data is large and which is used for learning from
the 1st stage in the multi-stage learning method. For example,
in an experiment where the +BP method was used for the
Rastrigin function learning, the initial value of the absolute
value of errors of the pattern p∗ was εp∗

rr (0) = 0.164, the
learning curve vibrated in the range of 0.013∼0.014 when
the 1st stage was completed, the curve vibrated in the range
of 0.020∼0.028 when the 2nd stage was completed and then
the curve vibrated in the range of 0.094∼0.125 when the 3rd
stage was completed. Accordingly, in the 1st stage, only data
which was determined to be difficult was learned and errors
became smaller, to some extent. When new learning data was
added in the 2nd and 3rd stages, initial errors of the data were
large and weight correction vectors were forcibly moved in the
direction which reduces errors of newly added data. Hence,
the pattern p∗ belonged to the minority and errors that had
been reduced, increased again. On the other hand, the initial
value of an absolute data of errors of data added in the 3rd
stage was εp†

rr(4667) = 0.029, as to the pattern p† ≡(14,10),
the learning curve vibrated in the range of 0.011∼0.047 with
learning of 5 epochs and errors of this pattern were smaller
compared to those of the pattern p∗. At this point, a relative
relationship between pattern p∗ and pattern p† was fixed as to
the magnitude of errors. Until the completion of learning, the
relationship continued.

Fig. 4 shows the RMSE values at 1115 to 1135 epochs and

Fig. 3 The weight renewal vector for the multi-stage learning methods.

Fig. 4 The behavior of the paturn p between 1115～1135 epochs at the
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behaviors of the pattern p∗ and p† in the 3rd stage. The chart
above expresses the RMSE value and the one below represents
the errors. In the Fig. 4 the bold line corresponds to the pattern
p∗, and the narrow line to the pattern p† . The letter “a” is
the majority and “i” is the minority. As you can see from Fig.
4, the pattern p∗ repeats in the following order: the minority,
the minority, the majority and the majority. When the pattern
p∗ belongs to the majority, errors decrease and errors increase
when the pattern p∗ belongs to the minority. The same applies
to p†. Thus, the state where the average of errors decreases
only slightly continues until the completion of learning while
the relative relationship as to errors is maintained. As a result,
learning data, has a pattern similar to the pattern p∗, whose
errors increase even after reducing once in the 1st stage, and
are large even after learning is completed .

V. CONCLUSION

This paper extends the multi-stage learning method pro-
posed by the authors for the function approximation problems
of classifying learning data in a phased manner, focusing on
their learnabilities prior to learning in the multi layered neural
network, and demonstrates validity of the extended multi-stage
learning method. Specifically, this paper verifies by computer
experiments that both of learning accuracy and learning time
were improved even when the BP method is used as a learning
rule of the multi-stage learning method.

In learning, oscillatory phenomena of a learning curve serve
an important role in learning performance. The authors also
discuss the occurrence mechanisms of oscillatory phenomena
in learning. Furthermore, the authors discuss the reasons that
errors of some data remain large value even after learning,
observing behaviors during learning.

The multi-stage learning method focuses on the distance
between output vectors, to the distance between input vectors
and the magnitude of output vectors, (output values of the
function approximation problems in this paper) for categoriz-
ing learning data. A further expansion of this study on the
multi-stage learning method, will be to apply it to learning
subjects such as discrimination problems where such distance
relationships are not available.
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