Search results for: the suspended string equation
1047 On the Exact Solution of Non-Uniform Torsion for Beams with Axial Symmetric Cross-Section
Authors: A.Campanile, M. Mandarino, V. Piscopo, A. Pranzitelli
Abstract:
In the traditional theory of non-uniform torsion the axial displacement field is expressed as the product of the unit twist angle and the warping function. The first one, variable along the beam axis, is obtained by a global congruence condition; the second one, instead, defined over the cross-section, is determined by solving a Neumann problem associated to the Laplace equation, as well as for the uniform torsion problem. So, as in the classical theory the warping function doesn-t punctually satisfy the first indefinite equilibrium equation, the principal aim of this work is to develop a new theory for non-uniform torsion of beams with axial symmetric cross-section, fully restrained on both ends and loaded by a constant torque, that permits to punctually satisfy the previous equation, by means of a trigonometric expansion of the axial displacement and unit twist angle functions. Furthermore, as the classical theory is generally applied with good results to the global and local analysis of ship structures, two beams having the first one an open profile, the second one a closed section, have been analyzed, in order to compare the two theories.Keywords: Non-uniform torsion, Axial symmetric cross-section, Fourier series, Helmholtz equation, FE method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23651046 Prediction of Henry's Constant in Polymer Solutions using the Peng-Robinson Equation of State
Authors: Somayeh Tourani, Alireza Behvandi
Abstract:
The peng-Robinson (PR), a cubic equation of state (EoS), is extended to polymers by using a single set of energy (A1, A2, A3) and co-volume (b) parameters per polymer fitted to experimental volume data. Excellent results for the volumetric behavior of the 11 polymer up to 2000 bar pressure are obtained. The EoS is applied to the correlation and prediction of Henry constants in polymer solutions comprising three polymer and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with two adjustable parameter is satisfactory compared with the experimental data. As a result, the present work provides a simple and useful model for the prediction of Henry's constant for polymer containing systems including those containing polar, nonpolar and supercritical fluids.
Keywords: Equation of state, Henry's constant, Peng-Robinson, polymer solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21431045 Development of Blast Vibration Equation Considering the Polymorphic Characteristics of Basaltic Ground
Authors: Dong Wook Lee, Seung Hyun Kim
Abstract:
Geological structure formed by volcanic activities shows polymorphic characteristics due to repeated cooling and hardening of lava. The Jeju region is showing polymorphic characteristics in which clinker layers are irregularly distributed along with vesicular basalt due to volcanic activities. Accordingly, resident damages and environmental disputes occur frequently in the Jeju region due to blasting. The purpose of this study is to develop a blast vibration equation considering the polymorphic characteristics of basaltic ground in Jeju. The blast vibration equation consists of a functional formula of the blasting vibration constant K that changes according to ground characteristics, and attenuation index n. The case study results in Jeju showed that if there are clinker layers, attenuation index n showed a distribution of -1.32~-1.81, whereas if there are no clinker layers, n was -2.79. Moreover, if there are no clinker layers, the frequency of blast vibration showed a high frequency band from 30Hz to 100Hz, while in rocks with clinker layers it showed a low frequency band from 10Hz to 20Hz.
Keywords: Blast vibration equation, basaltic ground, clinker layer, blasting vibration constant, attenuation index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14841044 Study of Real Gas Behavior in a Single-Stage Gas Gun
Authors: A. Moradi, S. Khodadadiyan
Abstract:
In this paper, one-dimensional analysis of flow in a single-stage gas gun is conducted. The compressible inviscid flow equations are numerically solved by the second-order Roe TVD method, by using moving boundaries. For investigation of real gas effect the Noble-Able equation is applied. The numerical results are compared with the experimental data to validate the numerical scheme. The results show that with using the Noble-Able equation, the muzzle velocity decreases.Keywords: Gas gun, Roe, projectile, muzzle velocity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23111043 Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model
Authors: M. Elkhoury
Abstract:
A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-ε closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-ε)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made.Keywords: Turbulence modeling, complex flow simulation, scale adaptive simulation, one-equation turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14721042 Ion- Acoustic Solitary Waves in a Self- Gravitating Dusty Plasma Having Two-Temperature Electrons
Authors: S.N.Paul, G.Pakira, B.Paul, B.Ghosh
Abstract:
Nonlinear propagation of ion-acoustic waves in a selfgravitating dusty plasma consisting of warm positive ions, isothermal two-temperature electrons and negatively charged dust particles having charge fluctuations is studied using the reductive perturbation method. It is shown that the nonlinear propagation of ion-acoustic waves in such plasma can be described by an uncoupled third order partial differential equation which is a modified form of the usual Korteweg-deVries (KdV) equation. From this nonlinear equation, a new type of solution for the ion-acoustic wave is obtained. The effects of two-temperature electrons, gravity and dust charge fluctuations on the ion-acoustic solitary waves are discussed with possible applications.Keywords: Charge fluctuations, gravitating dusty plasma, Ionacoustic solitary wave, Two-temperature electrons
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20491041 A Numerical Algorithm for Positive Solutions of Concave and Convex Elliptic Equation on R2
Authors: Hailong Zhu, Zhaoxiang Li
Abstract:
In this paper we investigate numerically positive solutions of the equation -Δu = λuq+up with Dirichlet boundary condition in a boundary domain ╬® for λ > 0 and 0 < q < 1 < p < 2*, we will compute and visualize the range of λ, this problem achieves a numerical solution.
Keywords: positive solutions, concave-convex, sub-super solution method, pseudo arclength method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13201040 Sedimentation and its Challenges for Operation and Maintenance of Hydraulic Structures using SHARC Software- A Case Study of Eastern Intake in Dez Diversion Dam in Iran
Authors: M.R. Mansoujian, N. Hedayat, M. Mashal, H, Kiamanesh
Abstract:
Analytical investigation of the sedimentation processes in the river engineering and hydraulic structures is of vital importance as this can affect water supply for the cultivating lands in the command area. The reason being that gradual sediment formation behind the reservoir can reduce the nominal capacity of these dams. The aim of the present paper is to analytically investigate sedimentation process along the river course and behind the storage reservoirs in general and the Eastern Intake of the Dez Diversion weir in particular using the SHARC software. Results of the model indicated the water level at 115.97m whereas the real time measurement from the river cross section was 115.98 m which suggests a significantly close relation between them. The average transported sediment load in the river was measured at 0.25mm , from which it can be concluded that nearly 100% of the suspended loads in river are moving which suggests no sediment settling but indicates that almost all sediment loads enters into the intake. It was further showed the average sediment diameter entering the intake to be 0.293 mm which in turn suggests that about 85% of suspended sediments in the river entre the intake. Comparison of the results from the SHARC model with those obtained form the SSIIM software suggests quite similar outputs but distinguishing the SHARC model as more appropriate for the analysis of simpler problems than other model.Keywords: SHARC, Eastern Intake, Dez Diversion Weir.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961039 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme
Authors: Yoichi Hikino, Mutsuto Kawahara
Abstract:
The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651038 Existence of Periodic Solution for p-Laplacian Neutral Rayleigh Equation with Sign-variable Coefficient of Non Linear Term
Authors: Aomar Anane, Omar Chakrone, Loubna Moutaouekkil
Abstract:
As p-Laplacian equations have been widely applied in field of the fluid mechanics and nonlinear elastic mechanics, it is necessary to investigate the periodic solutions of functional differential equations involving the scalar p-Laplacian. By using Mawhin’s continuation theorem, we study the existence of periodic solutions for p-Laplacian neutral Rayleigh equation (ϕp(x(t)−c(t)x(t − r))) + f(x(t)) + g1(x(t − τ1(t, |x|∞))) + β(t)g2(x(t − τ2(t, |x|∞))) = e(t), It is meaningful that the functions c(t) and β(t) are allowed to change signs in this paper, which are different from the corresponding ones of known literature.
Keywords: periodic solution, neutral Rayleigh equation, variable sign, Deviating argument, p-Laplacian, Mawhin’s continuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13791037 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation
Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah
Abstract:
Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22031036 Localized Meshfree Methods for Solving 3D-Helmholtz Equation
Authors: Reza Mollapourasl, Majid Haghi
Abstract:
In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.
Keywords: Radial basis functions, Hermite finite difference, Helmholtz equation, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321035 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.
Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3631034 Integral Operators Related to Problems of Interface Dynamics
Authors: Pa Pa Lin
Abstract:
This research work is concerned with the eigenvalue problem for the integral operators which are obtained by linearization of a nonlocal evolution equation. The purpose of section II.A is to describe the nature of the problem and the objective of the project. The problem is related to the “stable solution" of the evolution equation which is the so-called “instanton" that describe the interface between two stable phases. The analysis of the instanton and its asymptotic behavior are described in section II.C by imposing the Green function and making use of a probability kernel. As a result , a classical Theorem which is important for an instanton is proved. Section III devoted to a study of the integral operators related to interface dynamics which concern the analysis of the Cauchy problem for the evolution equation with initial data close to different phases and different regions of space.
Keywords: Evolution, Green function, instanton, integral operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12331033 Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions
Authors: I. Otete, A. I. Ejere, I. S. Okunzuwa
Abstract:
In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.
Keywords: Schrödinger's equation, bound state, Hulthen-Yukawa potential, Nikiforov-Uvarov, D-dimensions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4531032 Kinematic Modeling and Workspace Analysis of a Spatial Cable Suspended Robot as Incompletely Restrained Positioning Mechanism
Authors: Jahanbakhsh Hamedi, Hassan Zohoor
Abstract:
This article proposes modeling, simulation and kinematic and workspace analysis of a spatial cable suspended robot as incompletely Restrained Positioning Mechanism (IRPM). These types of robots have six cables equal to the number of degrees of freedom. After modeling, the kinds of workspace are defined then an statically reachable combined workspace for different geometric structures of fixed and moving platform is obtained. This workspace is defined as the situations of reference point of the moving platform (center of mass) which under external forces such as weight and with ignorance of inertial effects, the moving platform should be in static equilibrium under conditions that length of all cables must not be exceeded from the maximum value and all of cables must be at tension (they must have non-negative tension forces). Then the effect of various parameters such as the size of moving platform, the size of fixed platform, geometric configuration of robots, magnitude of applied forces and moments to moving platform on workspace of these robots with different geometric configuration are investigated. Obtained results should be effective in employing these robots under different conditions of applied wrench for increasing the workspace volume.Keywords: Kinematic modeling, applied wrench, workspace, cable based robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991031 An Efficient Method for Solving Multipoint Equation Boundary Value Problems
Authors: Ampon Dhamacharoen, Kanittha Chompuvised
Abstract:
In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861030 On the Fuzzy Difference Equation xn+1 = A +
Authors: Qianhong Zhang, Lihui Yang, Daixi Liao,
Abstract:
In this paper, we study the existence, the boundedness and the asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equations xn+1 = A + k i=0 Bi xn-i , n= 0, 1, · · · . where (xn) is a sequence of positive fuzzy numbers, A,Bi and the initial values x-k, x-k+1, · · · , x0 are positive fuzzy numbers. k ∈ {0, 1, 2, · · ·}.
Keywords: Fuzzy difference equation, boundedness, persistence, equilibrium point, asymptotic behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171029 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C
Authors: Minghui Wang, Luping Xu, Juntao Zhang
Abstract:
Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101028 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer
Authors: H. Mohammadiun, A. Kianifar, A. Kargar
Abstract:
Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18991027 The Direct Ansaz Method for Finding Exact Multi-Wave Solutions to the (2+1)-Dimensional Extension of the Korteweg de-Vries Equation
Authors: Chuanjian Wang, Changfu Liu, Zhengde Dai
Abstract:
In this paper, the direct AnsAz method is used for constructing the multi-wave solutions to the (2+1)-dimensional extension of the Korteweg de-Vries (shortly EKdV) equation. A new breather type of three-wave solutions including periodic breather type soliton solution, breather type of two-solitary solution are obtained. Some cases with specific values of the involved parameters are plotted for each of the three-wave solutions. Mechanical features of resonance interaction among the multi-wave are discussed. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.
Keywords: EKdV equation, Breather, Soliton, Bilinear form, The direct AnsAz method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781026 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field
Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand
Abstract:
The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11711025 Periodic Solutions for a Third-order p-Laplacian Functional Differential Equation
Authors: Yanling Zhu, Kai Wang
Abstract:
By means of Mawhin’s continuation theorem, we study a kind of third-order p-Laplacian functional differential equation with distributed delay in the form: ϕp(x (t)) = g t, 0 −τ x(t + s) dα(s) + e(t), some criteria to guarantee the existence of periodic solutions are obtained.
Keywords: p–Laplacian, distributed delay, periodic solution, Mawhin's continuation theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12891024 Nonlinear Effects in Bubbly Liquid with Shock Waves
Authors: Raisa Kh. Bolotnova, Marat N. Galimzianov, Andrey S. Topolnikov, Uliana O. Agisheva, Valeria A. Buzina
Abstract:
The paper presents the results of theoretical and numerical modeling of propagation of shock waves in bubbly liquids related to nonlinear effects (realistic equation of state, chemical reactions, two-dimensional effects). On the basis on the Rankine- Hugoniot equations the problem of determination of parameters of passing and reflected shock waves in gas-liquid medium for isothermal, adiabatic and shock compression of the gas component is solved by using the wide-range equation of state of water in the analitic form. The phenomenon of shock wave intensification is investigated in the channel of variable cross section for the propagation of a shock wave in the liquid filled with bubbles containing chemically active gases. The results of modeling of the wave impulse impact on the solid wall covered with bubble layer are presented.Keywords: bubbly liquid, cavitation, equation of state, shock wave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931023 Application of Build-up and Wash-off Models for an East-Australian Catchment
Authors: Iqbal Hossain, Monzur Alam Imteaz, Mohammed Iqbal Hossain
Abstract:
Estimation of stormwater pollutants is a pre-requisite for the protection and improvement of the aquatic environment and for appropriate management options. The usual practice for the stormwater quality prediction is performed through water quality modeling. However, the accuracy of the prediction by the models depends on the proper estimation of model parameters. This paper presents the estimation of model parameters for a catchment water quality model developed for the continuous simulation of stormwater pollutants from a catchment to the catchment outlet. The model is capable of simulating the accumulation and transportation of the stormwater pollutants; suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) from a particular catchment. Rainfall and water quality data were collected for the Hotham Creek Catchment (HTCC), Gold Coast, Australia. Runoff calculations from the developed model were compared with the calculated discharges from the widely used hydrological models, WBNM and DRAINS. Based on the measured water quality data, model water quality parameters were calibrated for the above-mentioned catchment. The calibrated parameters are expected to be helpful for the best management practices (BMPs) of the region. Sensitivity analyses of the estimated parameters were performed to assess the impacts of the model parameters on overall model estimations of runoff water quality.Keywords: Calibration, Model Parameters, Suspended Solids, TotalNitrogen, Total Phosphorus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21831022 An Optimal Control of Water Pollution in a Stream Using a Finite Difference Method
Authors: Nopparat Pochai, Rujira Deepana
Abstract:
Water pollution assessment problems arise frequently in environmental science. In this research, a finite difference method for solving the one-dimensional steady convection-diffusion equation with variable coefficients is proposed; it is then used to optimize water treatment costs.Keywords: Finite difference, One-dimensional, Steady state, Waterpollution control, Optimization, Convection-diffusion equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471021 Propagation of Viscous Waves and Activation Energy of Hydrocarbon Fluids
Authors: Ram N. Singh, Abraham K. George, Dawood N. Al-Namaani
Abstract:
The Euler-s equation of motion is extended to include the viscosity stress tensor leading to the formulation of Navier– Stokes type equation. The latter is linearized and applied to investigate the rotational motion or vorticity in a viscous fluid. Relations for the velocity of viscous waves and attenuation parameter are obtained in terms of viscosity (μ) and the density (¤ü) of the fluid. μ and ¤ü are measured experimentally as a function of temperature for two different samples of light and heavy crude oil. These data facilitated to determine the activation energy, velocity of viscous wave and the attenuation parameter. Shear wave velocity in heavy oil is found to be much larger than the light oil, whereas the attenuation parameter in heavy oil is quite low in comparison to light one. The activation energy of heavy oil is three times larger than light oil.Keywords: Activation Energy, Attenuation, Crude Oil, Navier- Stokes Equation, Viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19871020 Iterative Solutions to Some Linear Matrix Equations
Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan
Abstract:
In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.
Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18571019 A New Inversion-free Method for Hermitian Positive Definite Solution of Matrix Equation
Authors: Minghui Wang, Juntao Zhang
Abstract:
An inversion-free iterative algorithm is presented for solving nonlinear matrix equation with a stepsize parameter t. The existence of the maximal solution is discussed in detail, and the method for finding it is proposed. Finally, two numerical examples are reported that show the efficiency of the method.
Keywords: Inversion-free method, Hermitian positive definite solution, Maximal solution, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16061018 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation
Authors: M. Karami Khorramabadi, A. R. Nezamabadi
Abstract:
This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.
Keywords: Functionally Graded Beam, Free Vibration, Elastic Foundation, Engesser-Timoshenko Beam Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937