Search results for: Best subset technique.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3157

Search results for: Best subset technique.

2947 Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game

Authors: Ibidapo O. Akinyemi, Ezekiel F. Adebiyi, Harrison O. D. Longe

Abstract:

The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.

Keywords: Decision making, Machine learning, Strategy, Ayo game.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
2946 Transient Stress Analysis on Medium Modules Spur Gear by Using Mode Super Position Technique

Authors: Ali Raad Hassan

Abstract:

Natural frequencies and dynamic response of a spur gear sector are investigated using a two dimensional finite element model that offers significant advantages for dynamic gear analyses. The gear teeth are analyzed for different operating speeds. A primary feature of this modeling is determination of mesh forces using a detailed contact analysis for each time step as the gears roll through the mesh. ANSYS software has been used on the proposed model to find the natural frequencies by Block Lanczos technique and displacements and dynamic stresses by transient mode super position method. The effect of rotational speed of the gear on the dynamic response of gear tooth has been studied and design limits have been discussed.

Keywords: Spur gear, Natural frequency, transient analysis, Mode super position technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2982
2945 Extended Low Power Bus Binding Combined with Data Sequence Reordering

Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho

Abstract:

In this paper, we address the problem of reducing the switching activity (SA) in on-chip buses through the use of a bus binding technique in high-level synthesis. While many binding techniques to reduce the SA exist, we present yet another technique for further reducing the switching activity. Our proposed method combines bus binding and data sequence reordering to explore a wider solution space. The problem is formulated as a multiple traveling salesman problem and solved using simulated annealing technique. The experimental results revealed that a binding solution obtained with the proposed method reduces 5.6-27.2% (18.0% on average) and 2.6-12.7% (6.8% on average) of the switching activity when compared with conventional binding-only and hybrid binding-encoding methods, respectively.

Keywords: low power, bus binding, switching activity, multiple traveling salesman problem, data sequence reordering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
2944 Review and Experiments on SDMSCue

Authors: Ashraf Anwar

Abstract:

In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.

Keywords: Artificial intelligence, recall, recognition, SDM, SDMSCue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
2943 A New Algorithm for Cluster Initialization

Authors: Moth'd Belal. Al-Daoud

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the initialization of cluster centers. In this article we propose a new algorithm to initialize the clusters. The proposed algorithm is based on finding a set of medians extracted from a dimension with maximum variance. The algorithm has been applied to different data sets and good results are obtained.

Keywords: clustering, k-means, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
2942 Compression and Filtering of Random Signals under Constraint of Variable Memory

Authors: Anatoli Torokhti, Stan Miklavcic

Abstract:

We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
2941 Agent-Based Simulation of Simulating Anticipatory Systems – Classification

Authors: Eugene Kindler

Abstract:

The present paper is oriented to classification and application of agent technique in simulation of anticipatory systems, namely those that use simulation models for the aid of anticipation. The main ideas root in the fact that the best way for description of computer simulation models is the technique of describing the simulated system itself (and the translation into the computer code is provided as automatic), and that the anticipation itself is often nested.

Keywords: Agents, Anticipatory systems, Discrete eventsimulation, Simula, Taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
2940 A Robust Method for Encrypted Data Hiding Technique Based on Neighborhood Pixels Information

Authors: Ali Shariq Imran, M. Younus Javed, Naveed Sarfraz Khattak

Abstract:

This paper presents a novel method for data hiding based on neighborhood pixels information to calculate the number of bits that can be used for substitution and modified Least Significant Bits technique for data embedding. The modified solution is independent of the nature of the data to be hidden and gives correct results along with un-noticeable image degradation. The technique, to find the number of bits that can be used for data hiding, uses the green component of the image as it is less sensitive to human eye and thus it is totally impossible for human eye to predict whether the image is encrypted or not. The application further encrypts the data using a custom designed algorithm before embedding bits into image for further security. The overall process consists of three main modules namely embedding, encryption and extraction cm.

Keywords: Data hiding, image processing, information security, stagonography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
2939 Improved Approximation to the Derivative of a Digital Signal Using Wavelet Transforms for Crosstalk Analysis

Authors: S. P. Kozaitis, R. L. Kriner

Abstract:

The information revealed by derivatives can help to better characterize digital near-end crosstalk signatures with the ultimate goal of identifying the specific aggressor signal. Unfortunately, derivatives tend to be very sensitive to even low levels of noise. In this work we approximated the derivatives of both quiet and noisy digital signals using a wavelet-based technique. The results are presented for Gaussian digital edges, IBIS Model digital edges, and digital edges in oscilloscope data captured from an actual printed circuit board. Tradeoffs between accuracy and noise immunity are presented. The results show that the wavelet technique can produce first derivative approximations that are accurate to within 5% or better, even under noisy conditions. The wavelet technique can be used to calculate the derivative of a digital signal edge when conventional methods fail.

Keywords: digital signals, electronics, IBIS model, printedcircuit board, wavelets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
2938 Implementation of Neural Network Based Electricity Load Forecasting

Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw

Abstract:

This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.

Keywords: Neural network, Load forecast, Time series, wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
2937 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the Internet. Also, unauthorized editing is occurred frequently. Thus, we propose an editing prevention technique for high-quality (HQ) video that can prevent these illegally edited copies from spreading out. The proposed technique is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the embedding signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in unauthorized access prevention method of visual communication or traitor tracking applications which need fast detection process to prevent illegally edited video content from spreading out.

Keywords: Editing prevention technique, gradient method, high-quality video, luminance change, visual communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
2936 A Keyword-Based Filtering Technique of Document-Centric XML using NFA Representation

Authors: Changwoo Byun, Kyounghan Lee, Seog Park

Abstract:

XML is becoming a de facto standard for online data exchange. Existing XML filtering techniques based on a publish/subscribe model are focused on the highly structured data marked up with XML tags. These techniques are efficient in filtering the documents of data-centric XML but are not effective in filtering the element contents of the document-centric XML. In this paper, we propose an extended XPath specification which includes a special matching character '%' used in the LIKE operation of SQL in order to solve the difficulty of writing some queries to adequately filter element contents using the previous XPath specification. We also present a novel technique for filtering a collection of document-centric XMLs, called Pfilter, which is able to exploit the extended XPath specification. We show several performance studies, efficiency and scalability using the multi-query processing time (MQPT).

Keywords: XML Data Stream, Document-centric XML, Filtering Technique, Value-based Predicates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
2935 An Efficient Spam Mail Detection by Counter Technique

Authors: Raheleh Kholghi, Soheil Behnam Roudsari, Alireza Nemaney Pour

Abstract:

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side.

Keywords: Anti-spam, Mail server, Sender side, Spam mail

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
2934 Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique

Authors: Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa, Aini Hussain

Abstract:

Machine vision is an application of computer vision to automate conventional work in industry, manufacturing or any other field. Nowadays, people in agriculture industry have embarked into research on implementation of engineering technology in their farming activities. One of the precision farming activities that involve machine vision system is automatic weeding strategy. Automatic weeding strategy in oil palm plantation could minimize the volume of herbicides that is sprayed to the fields. This paper discusses an automatic weeding strategy in oil palm plantation using machine vision system for the detection and differential spraying of weeds. The implementation of vision system involved the used of image processing technique to analyze weed images in order to recognized and distinguished its types. Image filtering technique has been used to process the images as well as a feature extraction method to classify the type of weed images. As a result, the image processing technique contributes a promising result of classification to be implemented in machine vision system for automated weeding strategy.

Keywords: Machine vision, Automatic Weeding Strategy, filter, feature extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
2933 Chua’s Circuit Regulation Using a Nonlinear Adaptive Feedback Technique

Authors: Abolhassan Razminia, Mohammad-Ali Sadrnia

Abstract:

Chua’s circuit is one of the most important electronic devices that are used for Chaos and Bifurcation studies. A central role of secure communication is devoted to it. Since the adaptive control is used vastly in the linear systems control, here we introduce a new trend of application of adaptive method in the chaos controlling field. In this paper, we try to derive a new adaptive control scheme for Chua’s circuit controlling because control of chaos is often very important in practical operations. The novelty of this approach is for sake of its robustness against the external perturbations which is simulated as an additive noise in all measured states and can be generalized to other chaotic systems. Our approach is based on Lyapunov analysis and the adaptation law is considered for the feedback gain. Because of this, we have named it NAFT (Nonlinear Adaptive Feedback Technique). At last, simulations show the capability of the presented technique for Chua’s circuit.

Keywords: Chaos, adaptive control, nonlinear control, Chua's circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
2932 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology

Authors: Amit Kamra, V. K. Jain, Pragya

Abstract:

Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other stateof- the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.

Keywords: Enhancement, mammography, multi-scale, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
2931 Investigation on Feature Extraction and Classification of Medical Images

Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik

Abstract:

In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..

Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
2930 Optical Flow Technique for Supersonic Jet Measurements

Authors: H. D. Lim, Jie Wu, T. H. New, Shengxian Shi

Abstract:

This paper outlines the development of an experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 4 bar and exit Mach of 1.5. High-speed singleframe or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Despite these challenges however, this supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.

Keywords: Schlieren, optical flow, supersonic jets, shock shear layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
2929 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP

Authors: S. Boonpoke, B. Marungsri

Abstract:

This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.

Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
2928 Structural Damage Detection via Incomplete Modal Data Using Output Data Only

Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.

Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
2927 Evaluation of Transfer Capability Considering Uncertainties of System Operating Condition and System Cascading Collapse

Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan

Abstract:

Over the past few decades, power system industry in many developing and developed countries has gone through a restructuring process of the industry where they are moving towards deregulated power industry. This situation will lead to competition among the generation and distribution companies to provide quality and efficient production of electric energy, which will reduce the price of electricity. Therefore it is important to obtain an accurate value of the available transfer capability (ATC) and transmission reliability margin (TRM) in order to ensure the effective power transfer between areas during the occurrence of uncertainties in the system. In this paper, the TRM and ATC is determined by taking into consideration the uncertainties of the system operating condition and system cascading collapse by applying the bootstrap technique. A case study of the IEEE RTS-79 is employed to verify the robustness of the technique proposed in the determination of TRM and ATC.

Keywords: Available transfer capability, bootstrap technique, cascading collapse, transmission reliability margin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
2926 An Efficient Technique for EMI Mitigation in Fluorescent Lamps using Frequency Modulation and Evolutionary Programming

Authors: V.Sekar, T.G.Palanivelu, B.Revathi

Abstract:

Electromagnetic interference (EMI) is one of the serious problems in most electrical and electronic appliances including fluorescent lamps. The electronic ballast used to regulate the power flow through the lamp is the major cause for EMI. The interference is because of the high frequency switching operation of the ballast. Formerly, some EMI mitigation techniques were in practice, but they were not satisfactory because of the hardware complexity in the circuit design, increased parasitic components and power consumption and so on. The majority of the researchers have their spotlight only on EMI mitigation without considering the other constraints such as cost, effective operation of the equipment etc. In this paper, we propose a technique for EMI mitigation in fluorescent lamps by integrating Frequency Modulation and Evolutionary Programming. By the Frequency Modulation technique, the switching at a single central frequency is extended to a range of frequencies, and so, the power is distributed throughout the range of frequencies leading to EMI mitigation. But in order to meet the operating frequency of the ballast and the operating power of the fluorescent lamps, an optimal modulation index is necessary for Frequency Modulation. The optimal modulation index is determined using Evolutionary Programming. Thereby, the proposed technique mitigates the EMI to a satisfactory level without disturbing the operation of the fluorescent lamp.

Keywords: Ballast, Electromagnetic interference (EMI), EMImitigation, Evolutionary programming (EP), Fluorescent lamp, Frequency Modulation (FM), Modulation index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
2925 A Simple Constellation Precoding Technique over MIMO-OFDM Systems

Authors: Fuh-Hsin Hwang, Tsui-Tsai Lin, Chih-Wen Chan, Cheng-Yuan Chang

Abstract:

This paper studies the design of a simple constellation precoding for a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system over Rayleigh fading channels where OFDM is used to keep the diversity replicas orthogonal and reduce ISI effects. A multi-user environment with K synchronous co-channel users is considered. The proposed scheme provides a bandwidth efficient transmission for individual users by increasing the system throughput. In comparison with the existing coded MIMO-OFDM schemes, the precoding technique is designed under the consideration of its low implementation complexity while providing a comparable error performance to the existing schemes. Analytic and simulation results have been presented to show the distinguished error performance.

Keywords: coded modulation, diversity technique, OFDM, MIMO, constellation precoding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
2924 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.

Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
2923 Reduction of Leakage Power in Digital Logic Circuits Using Stacking Technique in 45 Nanometer Regime

Authors: P.K. Sharma, B. Bhargava, S. Akashe

Abstract:

Power dissipation due to leakage current in the digital circuits is a biggest factor which is considered specially while designing nanoscale circuits. This paper is exploring the ideas of reducing leakage current in static CMOS circuits by stacking the transistors in increasing numbers. Clearly it means that the stacking of OFF transistors in large numbers result a significant reduction in power dissipation. Increase in source voltage of NMOS transistor minimizes the leakage current. Thus stacking technique makes circuit with minimum power dissipation losses due to leakage current. Also some of digital circuits such as full adder, D flip flop and 6T SRAM have been simulated in this paper, with the application of reduction technique on ‘cadence virtuoso tool’ using specter at 45nm technology with supply voltage 0.7V.

Keywords: Stack, 6T SRAM cell, low power, threshold voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3421
2922 The Comparison of Anchor and Star Schema from a Query Performance Perspective

Authors: Radek Němec

Abstract:

Today's business environment requires that companies have access to highly relevant information in a matter of seconds. Modern Business Intelligence tools rely on data structured mostly in traditional dimensional database schemas, typically represented by star schemas. Dimensional modeling is already recognized as a leading industry standard in the field of data warehousing although several drawbacks and pitfalls were reported. This paper focuses on the analysis of another data warehouse modeling technique - the anchor modeling, and its characteristics in context with the standardized dimensional modeling technique from a query performance perspective. The results of the analysis show information about performance of queries executed on database schemas structured according to principles of each database modeling technique.

Keywords: Data warehousing, anchor modeling, star schema, anchor schema, query performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319
2921 Pseudo-polynomial Motion Commands for Vibration Suppression of Belt-driven Rotary Platforms

Authors: Giovanni Incerti

Abstract:

The motion planning technique described in this paper has been developed to eliminate or reduce the residual vibrations of belt-driven rotary platforms, while maintaining unchanged the motion time and the total angular displacement of the platform. The proposed approach is based on a suitable choice of the motion command given to the servomotor that drives the mechanical device; this command is defined by some numerical coefficients which determine the shape of the displacement, velocity and acceleration profiles. Using a numerical optimization technique, these coefficients can be changed without altering the continuity conditions imposed on the displacement and its time derivatives at the initial and final time instants. The proposed technique can be easily and quickly implemented on an actual device, since it requires only a simple modification of the motion command profile mapped in the memory of the electronic motion controller.

Keywords: Command shaping, residual vibrations, belt transmission, servomechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
2920 A Dynamic RGB Intensity Based Steganography Scheme

Authors: Mandep Kaur, Surbhi Gupta, Parvinder S. Sandhu, Jagdeep Kaur

Abstract:

Steganography meaning covered writing. Steganography includes the concealment of information within computer files [1]. In other words, it is the Secret communication by hiding the existence of message. In this paper, we will refer to cover image, to indicate the images that do not yet contain a secret message, while we will refer to stego images, to indicate an image with an embedded secret message. Moreover, we will refer to the secret message as stego-message or hidden message. In this paper, we proposed a technique called RGB intensity based steganography model as RGB model is the technique used in this field to hide the data. The methods used here are based on the manipulation of the least significant bits of pixel values [3][4] or the rearrangement of colors to create least significant bit or parity bit patterns, which correspond to the message being hidden. The proposed technique attempts to overcome the problem of the sequential fashion and the use of stego-key to select the pixels.

Keywords: Steganography, Stego Image, RGB Image, Cryptography, LSB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
2919 A Comparison of Signal Processing Techniques for the Extraction of Breathing Rate from the Photoplethysmogram

Authors: Susannah G. Fleming Lionel Tarassenko

Abstract:

The photoplethysmogram (PPG) is the pulsatile waveform produced by the pulse oximeter, which is widely used for monitoring arterial oxygen saturation in patients. Various methods for extracting the breathing rate from the PPG waveform have been compared using a consistent data set, and a novel technique using autoregressive modelling is presented. This novel technique is shown to outperform the existing techniques, with a mean error in breathing rate of 0.04 breaths per minute.

Keywords: Autoregressive modelling, breathing rate, photoplethysmogram, pulse oximetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
2918 Generalized Noise Analysis of Log Domain Static Translinear Circuits

Authors: E. Farshidi

Abstract:

This paper presents a new general technique for analysis of noise in static log-domain translinear circuits. It is demonstrated that employing this technique, leads to a general, simple and routine method of the noise analysis. The circuit has been simulated by HSPICE. The simulation results are seen to conform to the theoretical analysis and shows benefits of the proposed circuit.

Keywords: Noise analysis, log-domain, static, dynamic, translinear loop, companding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234