Search results for: Semi-Markov Decision Process
4104 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684103 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application
Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed
Abstract:
This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16334102 Two DEA Based Ant Algorithms for CMS Problems
Authors: Hossein Ali Akbarpour, Fatemeh Dadkhah
Abstract:
This paper considers a multi criteria cell formation problem in Cellular Manufacturing System (CMS). Minimizing the number of voids and exceptional elements in cells simultaneously are two proposed objective functions. This problem is an Np-hard problem according to the literature, and therefore, we can-t find the optimal solution by an exact method. In this paper we developed two ant algorithms, Ant Colony Optimization (ACO) and Max-Min Ant System (MMAS), based on Data Envelopment Analysis (DEA). Both of them try to find the efficient solutions based on efficiency concept in DEA. Each artificial ant is considered as a Decision Making Unit (DMU). For each DMU we considered two inputs, the values of objective functions, and one output, the value of one for all of them. In order to evaluate performance of proposed methods we provided an experimental design with some empirical problem in three different sizes, small, medium and large. We defined three different criteria that show which algorithm has the best performance.Keywords: Ant algorithm, Cellular manufacturing system, Data envelopment analysis, Efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16544101 Real-time Laser Monitoring based on Pipe Detective Operation
Authors: Mongkorn Klingajay, Tawatchai Jitson
Abstract:
The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18194100 Limitations of the Analytic Hierarchy Process Technique with Respect to Geographically Distributed Stakeholders
Authors: Azeem Ahmad, Magnus Goransson, Aamir Shahzad
Abstract:
The selection of appropriate requirements for product releases can make a big difference in a product success. The selection of requirements is done by different requirements prioritization techniques. These techniques are based on pre-defined and systematic steps to calculate the requirements relative weight. Prioritization is complicated by new development settings, shifting from traditional co-located development to geographically distributed development. Stakeholders, connected to a project, are distributed all over the world. These geographically distributions of stakeholders make it hard to prioritize requirements as each stakeholder have their own perception and expectations of the requirements in a software project. This paper discusses limitations of the Analytical Hierarchy Process with respect to geographically distributed stakeholders- (GDS) prioritization of requirements. This paper also provides a solution, in the form of a modified AHP, in order to prioritize requirements for GDS. We will conduct two experiments in this paper and will analyze the results in order to discuss AHP limitations with respect to GDS. The modified AHP variant is also validated in this paper.Keywords: Requirements Prioritization, GeographicallyDistributed Stakeholders, AHP, Modified AHP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28644099 Classification and Resolving Urban Problems by Means of Fuzzy Approach
Authors: F. Habib, A. Shokoohi
Abstract:
Urban problems are problems of organized complexity. Thus, many models and scientific methods to resolve urban problems are failed. This study is concerned with proposing of a fuzzy system driven approach for classification and solving urban problems. The proposed study investigated mainly the selection of the inputs and outputs of urban systems for classification of urban problems. In this research, five categories of urban problems, respect to fuzzy system approach had been recognized: control, polytely, optimizing, open and decision making problems. Grounded Theory techniques were then applied to analyze the data and develop new solving method for each category. The findings indicate that the fuzzy system methods are powerful processes and analytic tools for helping planners to resolve urban complex problems. These tools can be successful where as others have failed because both incorporate or address uncertainty and risk; complexity and systems interacting with other systems.
Keywords: Classification, complexity, Fuzzy theory, urban problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21134098 An Exhaustive Review of Die Sinking Electrical Discharge Machining Process and Scope for Future Research
Authors: M. M. Pawade, S. S. Banwait
Abstract:
Electrical Discharge Machine (EDM) is especially used for the manufacturing of 3-D complex geometry and hard material parts that are extremely difficult-to-machine by conventional machining processes. In this paper authors review the research work carried out in the development of die-sinking EDM within the past decades for the improvement of machining characteristics such as Material Removal Rate, Surface Roughness and Tool Wear Ratio. In this review various techniques reported by EDM researchers for improving the machining characteristics have been categorized as process parameters optimization, multi spark technique, powder mixed EDM, servo control system and pulse discriminating. At the end, flexible machine controller is suggested for Die Sinking EDM to enhance the machining characteristics and to achieve high-level automation. Thus, die sinking EDM can be integrated with Computer Integrated Manufacturing environment as a need of agile manufacturing systems.Keywords: Electrical Discharge Machine, Flexible Machine Controller, Material Removal Rate, Tool Wear Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52954097 Application of GIS and Statistical Multivariate Techniques for Estimation of Soil Erosion and Sediment Yield
Authors: Masoud Nasri, Ali Gholami, Ali Najafi
Abstract:
In recent years, most of the regions in the world are exposed to degradation and erosion caused by increasing population and over use of land resources. The understanding of the most important factors on soil erosion and sediment yield are the main keys for decision making and planning. In this study, the sediment yield and soil erosion were estimated and the priority of different soil erosion factors used in the MPSIAC method of soil erosion estimation is evaluated in AliAbad watershed in southwest of Isfahan Province, Iran. Different information layers of the parameters were created using a GIS technique. Then, a multivariate procedure was applied to estimate sediment yield and to find the most important factors of soil erosion in the model. The results showed that land use, geology, land and soil cover are the most important factors describing the soil erosion estimated by MPSIAC model.Keywords: land degradation, Soil erosion, Sediment yield, Aliabad, GIS technique, Land use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16914096 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool
Authors: M. S. Said, J. A. Ghani, Che Hassan C. H., N. N. Wan, M. A. Selamat, R. Othman
Abstract:
Metal matrix composites (MMCs) attract considerable attention as a result from its ability in providing a high strength, high modulus, high toughness, high impact properties, improving wear resistance and providing good corrosion resistance compared to unreinforced alloy. Aluminium Silicon (Al/Si) alloy MMC has been widely used in various industrial sectors such as in transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is an MMC that had been reinforced with aluminium nitrate (AlN) particle and become a new generation material use in automotive and aerospace sector. The AlN is one of the advance material that have a bright prospect in future since it has features such as lightweight, high strength, high hardness and stiffness quality. However, the high degree of ceramic particle reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density is the main problem which leads to difficulties in machining process. This paper examined the tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 (Titanium diboride) coated carbide cutting tool. The volume of the AlN reinforced particle was 10% and milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were at the cutting speed of (230, 300 and 370m/min, feed rate of 0.8, Depth of Cut (DoC) at 0.4m). The Sometech SV-35 video microscope system used to quantify of the tool wear. The result shown that tool life span increasing with the cutting speeds at (370m/min, feed rate of 0.8mm/tooth and DoC at 0.4mm) which constituted an optimum condition for longer tool life lasted until 123.2 mins. Meanwhile, at medium cutting speed which at 300m/m, feed rate of 0.8mm/tooth and depth of cut at 0.4mm we found that tool life span lasted until 119.86 mins while at low cutting speed it lasted in 119.66 mins. High cutting speed will give the best parameter in cutting AlSi/AlN MMCs material. The result will help manufacturers in machining process of AlSi/AlN MMCs materials.
Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated cemented carbide tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31964095 The Effects of Detector Spacing on Travel Time Prediction on Freeways
Authors: Piyali Chaudhuri, Peter T. Martin, Aleksandar Z. Stevanovic, Chongkai Zhu
Abstract:
Loop detectors report traffic characteristics in real time. They are at the core of traffic control process. Intuitively, one would expect that as density of detection increases, so would the quality of estimates derived from detector data. However, as detector deployment increases, the associated operating and maintenance cost increases. Thus, traffic agencies often need to decide where to add new detectors and which detectors should continue receiving maintenance, given their resource constraints. This paper evaluates the effect of detector spacing on freeway travel time estimation. A freeway section (Interstate-15) in Salt Lake City metropolitan region is examined. The research reveals that travel time accuracy does not necessarily deteriorate with increased detector spacing. Rather, the actual location of detectors has far greater influence on the quality of travel time estimates. The study presents an innovative computational approach that delivers optimal detector locations through a process that relies on Genetic Algorithm formulation.Keywords: Detector, Freeway, Genetic algorithm, Travel timeestimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16694094 Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction
Authors: P. Acosta-Santamaría, A. Ibatá-Soto, A. López-Vásquez
Abstract:
Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO2 doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO2 was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H2O2) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.
Keywords: Black sand mineral, methyl orange, oxidation, photocatalysis, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12734093 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14304092 The Effect of Land Cover on Movement of Vehicles in the Terrain
Authors: Dana Kristalova, Jan Mazal
Abstract:
This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the Army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.
Keywords: Movement in a terrain, geographical factors, surface of a field, mathematical evaluation, optimization and searching paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18904091 Interpolation Issue in PVNPG-14M Application for Technical Control of Artillery Fire
Authors: Martin Blaha, Ladislav Potužák, Daniel Holesz
Abstract:
This paper focused on application support for technical control of artillery units – PVNPG-14M, especially on interpolation issue. Artillery units of the Army of the Czech Republic, reflecting the current global security neighborhood, can be used outside the Czech Republic. The paper presents principles, evolution and calculation in the process of complete preparation. The paper presents expertise using of application of current artillery communication and information system and suggests the perspective future system. The paper also presents problems in process of complete preparing of fire especially problems in permanently information (firing table) and calculated values. The paper presents problems of current artillery communication and information system and suggests requirements of the future system.Keywords: Fire for effect, application, fire control, interpolation method, software development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11544090 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19314089 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran
Authors: Sahar Elkaee Behjati
Abstract:
Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.
Keywords: Dust, leaves, uptake total carbon, tehran, tree species.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7314088 Urban Growth Prediction in Athens, Greece, Using Artificial Neural Networks
Authors: D. Triantakonstantis, D. Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modelling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modelling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.
Keywords: Artificial Neural Networks, CORINE, Urban Atlas, Urban Growth Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34514087 Reduced Inventories, High Reliability and Short Throughput Times by Using CONWIP Production Planning System
Authors: Tomas Duranik, Juraj Ruzbarsky, Markus Stopper
Abstract:
CONWIP (constant work-in-process) as a pull production system have been widely studied by researchers to date. The CONWIP pull production system is an alternative to pure push and pure pull production systems. It lowers and controls inventory levels which make the throughput better, reduces production lead time, delivery reliability and utilization of work. In this article a CONWIP pull production system was simulated. It was simulated push and pull planning system. To compare these systems via a production planning system (PPS) game were adjusted parameters of each production planning system. The main target was to reduce the total WIP and achieve throughput and delivery reliability to minimum values. Data was recorded and evaluated. A future state was made for real production of plastic components and the setup of the two indicators with CONWIP pull production system which can greatly help the company to be more competitive on the market.Keywords: CONWIP, constant work in process, delivery reliability, hybrid production planning, PPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22684086 Removal of Hydrogen Sulphide from Air by Means of Fibrous Ion Exchangers
Authors: H. Wasag
Abstract:
The removal of hydrogen sulphide is required for reasons of health, odour problems, safety and corrosivity problems. The means of removing hydrogen sulphide mainly depend on its concentration and kind of medium to be purified. The paper deals with a method of hydrogen sulphide removal from the air by its catalytic oxidation to elemental sulphur with the use of Fe-EDTA complex. The possibility of obtaining fibrous filtering materials able to remove small concentrations of H2S from the air were described. The base of these materials is fibrous ion exchanger with Fe(III)- EDTA complex immobilized on their functional groups. The complex of trivalent iron converts hydrogen sulphide to elemental sulphur. Bivalent iron formed in the reaction is oxidized by the atmospheric oxygen, so complex of trivalent iron is continuously regenerated and the overall process can be accounted as pseudocatalytic. In the present paper properties of several fibrous catalysts based on ion exchangers with different chemical nature (weak acid,weak base and strong base) were described. It was shown that the main parameters affecting the process of catalytic oxidation are:concentration of hydrogen sulphide in the air, relative humidity of the purified air, the process time and the content of Fe-EDTA complex in the fibres. The data presented show that the filtering layers with anion exchange package are much more active in the catalytic processes of hydrogen sulphide removal than cation exchanger and inert materials. In the addition to the nature of the fibres relative air humidity is a critical factor determining efficiency of the material in the air purification from H2S. It was proved that the most promising carrier of the Fe-EDTA catalyst for hydrogen sulphide oxidation are Fiban A-6 and Fiban AK-22 fibres.
Keywords: hydrogen sulphide, catalytic oxidation, odour control, ion exchange, fibrous ion exchangers, air deodorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24994085 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data
Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala
Abstract:
Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.
Keywords: Databases, data mining, multi-agent, spatial datamart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20454084 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management and measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19284083 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition
Authors: Samia Sadouki Chibani, Abdelkamel Tari
Abstract:
Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.Keywords: Elephant herding optimization, web service composition, bio-inspired algorithms, QoS optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10324082 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network
Authors: Siavash Asadi Ghajarloo
Abstract:
Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21744081 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface
Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori
Abstract:
In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18764080 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution
Authors: Nikolay P. Brayanov, Anna V. Stoynova
Abstract:
Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.Keywords: Embedded code generation, embedded C code quality, embedded systems, model-based development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10094079 Estimating the Effect of Fluid in Pressing Process
Authors: A. Movaghar, R. A. Mahdavinejad
Abstract:
To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.
Keywords: Pressing, notch, matrix, flow function, vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7044078 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete
Authors: Hossein Kabir, Mojtaba Sadeghi
Abstract:
Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.Keywords: Nano reactive silica sand powder concrete, consolidation, compressive strength, normal curing, thermal accelerated curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13724077 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.Keywords: Image Enhancement, Neural Networks, Multi-Frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11944076 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves
Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada
Abstract:
Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.Keywords: Renewable energy, oscillating water column, multi-criteria selection, wells turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12434075 Analysis of Linear Equalizers for Cooperative Multi-User MIMO Based Reporting System
Authors: S. Hariharan, P. Muthuchidambaranathan
Abstract:
In this paper, we consider a multi user multiple input multiple output (MU-MIMO) based cooperative reporting system for cognitive radio network. In the reporting network, the secondary users forward the primary user data to the common fusion center (FC). The FC is equipped with linear equalizers and an energy detector to make the decision about the spectrum. The primary user data are considered to be a digital video broadcasting - terrestrial (DVB-T) signal. The sensing channel and the reporting channel are assumed to be an additive white Gaussian noise and an independent identically distributed Raleigh fading respectively. We analyzed the detection probability of MU-MIMO system with linear equalizers and arrived at the closed form expression for average detection probability. Also the system performance is investigated under various MIMO scenarios through Monte Carlo simulations.
Keywords: Cooperative MU-MIMO, DVB-T, Linear Equalizers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023