Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1738

Search results for: Nano reactive silica sand powder concrete

1738 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete

Authors: Hossein Kabir, Mojtaba Sadeghi

Abstract:

Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.

Keywords: Nano reactive silica sand powder concrete, consolidation, compressive strength, normal curing, thermal accelerated curing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
1737 Micro Environmental Concrete

Authors: M.Lanez, M.N.Oudjit, A.Bali

Abstract:

Reactive powder concretes (RPC) are characterized by particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial, as well as a final, high physicomechanical performance. To achieve this, we replaced the Portland cement (15% by weight) by materials rich in Silica (Slag and Dune Sand). The results obtained from tests carried out on RPC show that compressive and tensile strengths increase when adding the additions, thus improving the compactness of mixtures via filler and pozzolanic effect. With a reduction of the aggregate phase in the RPC and the abundance of dune sand (south Algeria) and slag (industrial byproduct of blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

Keywords: High mechanical strength, Reactive Powder Concrete, rheology, superplasticizer, workability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1736 The Improvement of 28-day Compressive Strength of Self Compacting Concrete Made by Different Percentages of Recycled Concrete Aggregates using Nano-Silica

Authors: S. Salkhordeh, P. Golbazi, H. Amini

Abstract:

In this study two series of self compacting concrete mixtures were prepared with 100% coarse recycled concrete aggregates and different percentages of 0%, 20%, 40%, 60%, 80% and 100% fine recycled concrete aggregates. In series I and II the water to binder ratios were 0.50 and 0.45, respectively. The cement content was kept 350 3 m kg for those mixtures that don't have any Nano-Silica. To improve the compressive strength of samples, Nano- Silica replaced with 10% of cement weight in concrete mixtures. By doing the tests, the results showed that, adding Nano-silica to the samples with less percentage of fine recycled concrete aggregates, lead to more increase on the compressive strength.

Keywords: Compressive Strength, Nano-Silica, RecycledConcrete Aggregates, Self Compacting Concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1735 Shrinkage of High Strength Concrete

Authors: S.M. Gupta, V.K. Sehgal, S.K. Kaushik

Abstract:

This paper presents the results of an experimental investigation carried out to evaluate the shrinkage of High Strength Concrete. High Strength Concrete is made by partially replacement of cement by flyash and silica fume. The shrinkage of High Strength Concrete has been studied using the different types of coarse and fine aggregates i.e. Sandstone and Granite of 12.5 mm size and Yamuna and Badarpur Sand. The Mix proportion of concrete is 1:0.8:2.2 with water cement ratio as 0.30. Superplasticizer dose @ of 2% by weight of cement is added to achieve the required degree of workability in terms of compaction factor. From the test results of the above investigation it can be concluded that the shrinkage strain of High Strength Concrete increases with age. The shrinkage strain of concrete with replacement of cement by 10% of Flyash and Silica fume respectively at various ages are more (6 to 10%) than the shrinkage strain of concrete without Flyash and Silica fume. The shrinkage strain of concrete with Badarpur sand as Fine aggregate at 90 days is slightly less (10%) than that of concrete with Yamuna Sand. Further, the shrinkage strain of concrete with Granite as Coarse aggregate at 90 days is slightly less (6 to 7%) than that of concrete with Sand stone as aggregate of same size. The shrinkage strain of High Strength Concrete is also compared with that of normal strength concrete. Test results show that the shrinkage strain of high strength concrete is less than that of normal strength concrete.

Keywords: Shrinkage high strength concrete, fly ash, silica fume& superplastizers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
1734 Influence of Silica Fume on Ultrahigh Performance Concrete

Authors: Vitoldas Vaitkevičius, Evaldas Šerelis

Abstract:

Silica fume, also known as microsilica (MS) or  condensed silica fume is a by-product of the production of silicon  metal or ferrosilicon alloys. Silica fume is one of the most effective  pozzolanic additives which could be used for ultrahigh performance  and other types of concrete. Despite the fact, however is not entirely  clear, which amount of silica fume is most optimal for UHPC. Main  objective of this experiment was to find optimal amount of silica  fume for UHPC with and without thermal treatment, when different  amount of quartz powder is substituted by silica fume. In this work  were investigated four different composition of UHPC with different  amount of silica fume. Silica fume were added 0, 10, 15 and 20% of  cement (by weight) to UHPC mixture. Optimal amount of silica fume  was determined by slump, viscosity, qualitative and quantitative  XRD analysis and compression strength tests methods.

Keywords: Compressive strength, silica fume, ultrahigh performance concrete, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4546
1733 Effect of Nanofibers on the Behavior of Cement Mortar and Concrete

Authors: Mostafa Osman, Ata El-kareim Shoeib

Abstract:

The main objective of this paper is study the influence of carbon nano-tubes fibers and nano silica fibers on the characteristic compressive strength and flexural strength on concrete and cement mortar. Twelve tested specimens were tested with square section its dimensions (4040 160) mm, divided into four groups. The first and second group studied the effect of carbon nano-tubes (CNTs) fibers with different percentage equal to 0.0, 0.11%, 0.22%, and 0.33% by weight of cement and effect of nano-silica (nS) fibers with different percentages equal to 0.0, 1.0%, 2.0%, and 3.0% by weight of cement on the cement mortar. The third and fourth groups studied the effect of CNTs fiber with different percentage equal to 0.0%, 0.11%, and 0.22% by weight of cement, and effect of nS fibers with different percentages were equal to 0.0%, 1.0%, and 2.0% by weight of cement on the concrete. The compressive strength and flexural strength at 7, 28, and 90 days is determined. From analysis of tested results concluded that the nano-fibers is more effective when used with cement mortar more than used with concrete because of increasing the surface area, decreasing the pore and the collection of nano-fibers. And also by adding nano-fibers the improvement of flexural strength of concrete and cement mortar is more than improvement of compressive strength.

Keywords: Carbon nano-tubes fibers, nano-silica (nS) fibers, compressive strength, flexural.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
1732 Comparing the Durability of Saudi Silica Sands for Use in Foundry Processing

Authors: Mahdi Alsagour, Sam Ramrattan

Abstract:

This paper was developed to investigate two types of sands from the Kingdom of Saudi Arabia (KSA) for potential use in the global metal casting industry. Four types of sands were selected for study, two of the sand systems investigated are natural sands from the KSA. The third sand sample is a heat processed synthetic sand and the last sample is commercially available US silica sand that is used as a control in the study. The purpose of this study is to define the durability of the four sand systems selected for foundry usage. Additionally, chemical analysis of the sand systems is presented before and after elevated temperature exposure. Results show that Saudi silica sands are durable and can be used in foundry processing.

Keywords: Alternative molding media, foundry sand, reclamation, silica sand, specialty sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
1731 Study of Water on the Surface of Nano-Silica Material: An NMR Study

Authors: J. Hassan

Abstract:

Water 2H NMR signal on the surface of nano-silica material, MCM-41, consists of two overlapping resonances. The 2H water spectrum shows a superposition of a Lorentzian line shape and the familiar NMR powder pattern line shape, indicating the existence of two spin components. Chemical exchange occurs between these two groups. Decomposition of the two signals is a crucial starting point for study the exchange process. In this article we have determined these spin component populations along with other important parameters for the 2H water NMR signal over a temperature range between 223 K and 343 K.

Keywords: Nano-Silica, surface water, NMR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1730 Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions

Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran

Abstract:

This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sands and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performances of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at 10% and 20% replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at 20% replacement levels was effective in mitigating expansions.

Keywords: Alkali silica reaction, natural zeolite, durability, expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
1729 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete

Authors: Fatih Hattatoglu, Abdulrezzak Bakiş

Abstract:

In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.

Keywords: Rigid pavement, reactive powder concrete, combined cure, pressure test, flexural test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
1728 Effects of Humidity and Silica Sand Particles on Vibration Generation by Friction Materials of Automotive Brake System

Authors: Mostafa M. Makrahy, Nouby M. Ghazaly, G. T. Abd el-Jaber

Abstract:

This paper presents the experimental study of vibration generated by friction materials of an automotive disc brake system using brake test rig. Effects of silica sand particles which are available on the road surface as an environmental condition with a size varied from 150 μm to 600 μm are evaluated. Also, the vibration of the brake disc is examined against the friction material in humidity environment conditions under variable rotational speed. The experimental results showed that the silica sand particles have significant contribution on the value of vibration amplitude which enhances with increasing the size of silica sand particles at different speed conditions. Also, it is noticed that the friction material is sensitive to humidity and the vibration magnitude increases under wet testing conditions. Moreover, it can be reported that with increasing the applied pressure and rotational speed of the braking system, the vibration amplitudes decrease for all cases.

Keywords: Friction material, silica sand particles, humidity environment, vibration of brake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
1727 Re-Use of Waste Marble in Producing Green Concrete

Authors: Hasan Şahan Arel

Abstract:

In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO3 and SiO2 present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO2 emissions by 12% and also lowering the costs from US$40/m3 to US$33/m3.

Keywords: Cement production, concrete, CO2 emission, marble, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1726 Influence of Silica Fume on High Strength Lightweight Concrete

Authors: H. Katkhuda, B. Hanayneh, N. Shatarat

Abstract:

The main objective of this paper is to determine the isolated effect of silica fume on tensile, compressive and flexure strengths on high strength lightweight concrete. Many experiments were carried out by replacing cement with different percentages of silica fume at different constant water-binder ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15%, 20% and 25% for a water-binder ratios ranging from 0.26 to 0.42. For all mixes, split tensile, compressive and flexure strengths were determined at 28 days. The results showed that the tensile, compressive and flexure strengths increased with silica fume incorporation but the optimum replacement percentage is not constant because it depends on the water–cementitious material (w/cm) ratio of the mix. Based on the results, a relationship between split tensile, compressive and flexure strengths of silica fume concrete was developed using statistical methods.

Keywords: Silica fume, Lightweight, High strength concrete, and Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3678
1725 Durability of Concrete with Different Mineral Admixtures: A Review

Authors: T. Ayub, N. Shafiq, S. U. Khan, M. F. Nuruddin

Abstract:

Several review papers exist in literature related to the concrete containing mineral admixtures; however this paper reviews the durability characteristics of the concrete containing fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK) and rice husk ash (RHA). Durability related properties reviewed include permeability, resistance to sulfate attack, alkali-silica reaction (ASR), carbonation, chloride ion penetration, freezing and thawing, abrasion, fire, acid and efflorescence. From review of existing literature, it is found that permeability of concrete depends upon the content of alumina in mineral admixtures, i.e. higher the alumina content, lesser the permeability which results higher resistance to sulfate and chloride ion penetration. Highly reactive mineral admixtures prevent more ASR and reduce efflorescence. The carbonation increases with the mineral admixtures because higher water binder ratio and lesser content of portlandite in concrete due to pozzolanic reaction. Mineral admixtures require air entrainment except MK and RHA for better resistance to freezing and thawing.

Keywords: Alkali silica reaction, carbonation, durability, mineral admixture, permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6785
1724 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat

Abstract:

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Keywords: Demulsifier, dehydration, silicon dioxide, nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
1723 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: Metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1722 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: Magnetic water, self-compacting light weight concrete, silica fume, superplasticizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
1721 GGE-Biplot Analysis of Nano-Titanium Dioxide and Nano-Silica Effects on Sunflower

Authors: Naser Sabaghnia, Mohsen Janmohammadi, Mehdi Mohebodini

Abstract:

Present investigation is performed to evaluate the effects of foliar application of salicylic acid, glycine betaine, ascorbic acid, nano-silica, and nano-titanium dioxide on sunflower. Results showed that the first two principal components were sufficient to create a two-dimensional treatment by trait biplot, and such biplot accounted percentages of 49% and 19%, respectively of the interaction between traits and treatments. The vertex treatments of polygon were ascorbic acid, glycine betaine, nano-TiO2, and control indicated that high performance in some important traits consists of number of days to seed maturity, number of seeds per head, number heads per single plant, hundred seed weight, seed length, seed yield performance, and oil content. Treatments suitable for obtaining the high seed yield were identified in the vector-view function of biplot and displayed nano-silica and nano titanium dioxide as the best treatments suitable for obtaining of high seed yield.

Keywords: Drought stress, nano-silicon dioxide, oil content, TiO2 nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
1720 A Review on Natural Fibre Reinforced Polymer Composites

Authors: C. W. Nguong, S. N. B. Lee, D. Sujan

Abstract:

Renewable natural fibres such as oil palm, flax, and pineapple leaf can be utilized to obtain new high performance polymer materials. The reuse of waste natural fibres as reinforcement for polymer is a sustainable option to the environment. However, due to its high hydroxyl content of cellulose, natural fibres are susceptible to absorb water that affects the composite mechanical properties adversely. Research found that Nano materials such as Nano Silica Carbide (n-SiC) and Nano Clay can be added into the polymer composite to overcome this problem by enhancing its mechanical properties in wet condition. The addition of Nano material improves the tensile and wear properties, flexural stressstrain behaviour, fracture toughness, and fracture strength of polymer natural composites in wet and dry conditions.

Keywords: Natural fibres, Nano Silica Carbide, Nano Clay, Wet Condition, Polymer Composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8438
1719 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method

Authors: M. Ghobeiti-Hasab, Z. Shariati

Abstract:

In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.

Keywords: Hard magnet, Sr-ferrite, Sol-gel auto-combustion, Nano-powder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672
1718 Effect of Silica Fume on the Properties of Steel-Fiber Reinforced Self-compacting Concrete

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, M. F. Nuruddin, Ali Elheber

Abstract:

Implementing significant advantages in the supply of self-compacting concrete (SCC) is necessary because of the, negative features of SCC. Examples of these features are the ductility problem along with the very high cost of its constituted materials. Silica fume with steel fiber can fix this matter by improving the ductility and decreasing the total cost of SCC by varying the cement ingredients. Many different researchers have found that there have not been enough research carried out on the steel fiber-reinforced self-compacting concrete (SFRSCC) produced with silica fume. This paper inspects both the fresh and the mechanical properties of SFRSCC with silica fume, the fresh qualities where slump flow, slump T50 and V- funnel. While, the mechanical characteristics were the compressive strength, ultrasound pulse velocity (UPV) and elastic modulus of the concrete samples. The experimental results have proven that steel fiber can enhance the mechanical features. In addition, the silica fume within the entire hybrid mix may possibly adapt the fiber dispersion and strengthen deficits due to the fibers. It could also improve the strength plus the bond between the fiber and the matrix with a dense calcium silicate-hydrate gel in SFRSCC. The concluded result was predicted using linear mathematical models and was found to be in great agreement with the experimental results.

Keywords: Self-compacting concrete, silica fume, steel fiber, fresh and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211
1717 An Investigation of the Effect of the Different Mix Constituents on Concrete Electric Resistivity

Authors: H. M. Ghasemzadeh, Y. Mohammadi, Gh. Nouri, S. E. Nabavi

Abstract:

Steel corrosion in concrete is considered as a main engineering problems for many countries and lots of expenses has been paid for their repair and maintenance annually. This problem may occur in all engineering structures whether in coastal and offshore or other areas. Hence, concrete structures should be able to withstand corrosion factors existing in water or soil. Reinforcing steel corrosion enhancement can be measured by use of concrete electrical resistance; and maintaining high electric resistivity in concrete is necessary for steel corrosion prevention. Lots of studies devoted to different aspects of the subjects worldwide. In this paper, an evaluation of the effects of W/C ratio, cementitious materials, and percent increase in silica fume were investigated on electric resistivity of high strength concrete. To do that, sixteen mix design with one aggregate grading was planned. Five of them had varying amount of W/C ratio and other eleven mixes was prepared with constant W/C ratio but different amount of cementitious materials. Silica fume and super plasticizer were used with different proportions in all specimens. Specimens were tested after moist curing for 28 days. A total of 80 cube specimens (50 mm) were tested for concrete electrical resistance. Results show that concrete electric resistivity can be increased with increasing amount of cementitious materials and silica fume.

Keywords: Corrosion, Electric resistivity, Mix design, Silica fume

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
1716 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture

Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou

Abstract:

Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.

Keywords: Concrete, mineral admixture, hydration, structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
1715 The Effects of Aggregate Sizes and Fiber Volume Fraction on Bending Toughness and Direct Tension of Steel Fiber Reinforced Concrete

Authors: Hyun-Woo Cho, Jae-Heum Moon, Jang-Hwa Lee

Abstract:

In order to supplement the brittle property of concrete, fibers are added into concrete mixtures. Compared to general concrete, various characteristics such as tensile strength, bending strength, bending toughness, and resistance to crack are superior, and even when cracks occur, improvements on toughness as well as resistance to shock are excellent due to the growth of fracture energy. Increased function of steel fiber reinforced concrete can be differentiated depending on the fiber dispersion, and sand percentage can be an important influence on the fiber dispersion. Therefore, in this research, experiments were planned on sand percentage in order to apprehend the influence of sand percentage on the bending properties and direct tension of SFRC and basic experiments were conducted on bending and direct tension in order to recognize the properties of bending properties and direct tension following the size of the aggregates and sand percentage.

Keywords: Steel Fiber Reinforced Concrete, Bending Toughness, Direct tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
1714 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based On Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: Bio-corrosion, concrete, leaching, bacteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
1713 Study of the Effects of Ceramic Nano-Pigments in Cement Mortar Corrosion Caused by Chlorine Ions

Authors: R. Moradpour, S.B. Ahmadi, T. Parhizkar, M. Ghodsian, E. Taheri-Nassaj

Abstract:

Superfine pigments that consist of natural and artificial pigments and are made of mineral soil with special characteristics are used in cementitious materials for various purposes. These pigments can decrease the amount of cement needed without loss of performance and strength and also change the monotonous and turbid colours of concrete into various attractive and light colours. In this study, the mechanical strength and resistance against chloride and halogen attacks of cement mortars containing ceramic nano-pigments in an affected environment are studied. This research suggests utilisation of ceramic nano-pigments between 50 and 1000 nm, obtaining full-depth coloured concrete, preventing chlorine penetration in the concrete up to a certain depth, and controlling corrosion in steel rebar with the Potentiostat (EG&G) apparatus.

Keywords: Nano-structures, Corrosion, Mechanical properties, Nano-pigments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
1712 Synthesis of ZnO Nanostructures via Gel-casting Method

Authors: A.A.Rohani, A.Salehi, M.Tabrizi, S. A. Manafi, A. Fardafshari

Abstract:

In this study, ZnO nano rods and ZnO ultrafine particles were synthesized by Gel-casting method. The synthesized ZnO powder has a hexagonal zincite structure. The ZnO aggregates with rod-like morphology are typically 1.4 μm in length and 120 nm in diameter, which consist of many small nanocrystals with diameters of 10 nm. Longer wires connected by many hexahedral ZnO nanocrystals were obtained after calcinations at the temperature over 600° C.The crystalline structures and morphologies of the powder have been characterized by X-ray diffraction(XRD) and Scaning electron microscopy (SEM).The result shows that the different preparation conditions such as concentration H2O, calcinations time and calcinations temperature have a lot of influences upon the properties of nano ZnO powders, an increase in the temperature of the calcinations results in an increase of the grain size and also the increase of the calcinations time in high temperature makes the size of the grains bigger. The existences of extra watter prevent nano grains from improving like rod morphology. We have obtained the smallest grain size of ZnO powder by controlling the process conditions. Finally In a suitable condition, a novel nanostructure, namely bi-rod-like ZnO nano rods was found which is different from known ZnO nanostructures.

Keywords: morphology, nano particles, ZnO, gel-Casting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
1711 Preparation of Fe3Si/Ferrite Micro- and Nano-Powder Composite

Authors: R. Bures, M. Streckova, M. Faberova, P. Kurek

Abstract:

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

Keywords: Micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3704
1710 Effect of Addition the Dune Sand Powder on Development of Compressive Strength and Hydration of Cement Pastes

Authors: S. Guettala, B. Mezghiche

Abstract:

In this paper, the effect of addition the dune sand powder (DSP) on development of compressive strength and hydration of cement pastes was investigated as a function of water/binder ratio, was varied, on the one hand, the percentage of DSP and on the other, the fineness of DSP. In order to understand better the pozzolanic effect of dune sand powder in cement pastes, we followed the mixtures hydration (50% Pure Lime + 50% DSP) by X-ray diffraction. These mixtures the pastes present a hydraulic setting which is due to the formation of a C-S-H phase (calcium silicate hydrate). The latter is semi-crystallized. This study is a simplified approach to that of the mixtures (80% ordinary Portland cement + 20% DSP), in which the main reaction is the fixing of the lime coming from the cement hydration in the presence of DSP, to form calcium silicate hydrate semi-crystallized of second generation. The results proved that up to (20% DSP) as Portland cement replacement could be used with a fineness of 4000 cm²/g without affecting adversely the compressive strength. After 28 days, the compressive strength at 5, 10 and 15% DSP is superior to Portland cement, with an optimum effect for a percentage of the order of 5% to 10% irrespective of the w/b ratio and fineness of DSP.

Keywords: Ordinary Portland Cement, Pure Lime, Dune Sand Powder, Compressive Strength, Hydration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
1709 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests

Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota

Abstract:

Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.

Keywords: Liquefaction, shaking table, shear modulus degradation, earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686