Real-time Laser Monitoring based on Pipe Detective Operation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Real-time Laser Monitoring based on Pipe Detective Operation

Authors: Mongkorn Klingajay, Tawatchai Jitson

Abstract:

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1062912

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822

References:


[1] Campbell, G. Rogers, K. Gilbert, J. Pirat - a system for quantitative sewer assessment, Interna¬tional No Dig-95, Dresden, Germany, 1995.
[2] Fitzgibbon, A. Pilu, M. Fisher R. Direct Least Square Fitting of Ellipses. Pattern analysis and machine intelligence, Vol. 21 Issue 5, pp 476-480, 1999.
[3] Gonzalez R.C. Digital Image Processing. Addison-Wesley, MA, 1987.
[4] Halir, R. Flusser J.: Numerically stable direct least squares fitting of ellipses. The Sixth International Conference in Central Europe on Computer Graphics and Visualization, Plze├▓, pp. 125-132, 1998.
[5] Moselhi, O. Shehab-Eldeen, T. Automated detection of surface defects in water and sewer pipes. Automation in Construction 8, pp 581-588, 1999.
[6] Pace, NG. Ultrasonic surveying of fully charged sewage pipes, Electronics and Communications Engineering Journal, pp 87-92, 1994.
[7] Romero, A. Applications and benefits of using camera technology to internally inspect polyethylene main service piping", American Gas Association Operations Conference, Clevehand, Ohio, USA, May 1999.
[8] Roth, H, Schilling, K. Navigation and Control for Pipe Inspection and Repair Robots: Proc of IFAC World Congress, 1999.
[9] Willke, T. Five technologies expected to change the pipe line industry, Pipe Line & Gas Industry, January 1998.
[10] Mongkorn Klingajay, Nicola Ivan Giannoccaro, The monitoring of autonomous threaded fastening based on curve fitting and lsm estimatione, Proceedings of The International Association of Science and Technology for Development IASTED) on Robotics and Applications (RA2005), Cambridge, USA, November 2005.
[11] Mongkorn Klingajay, Sirisorn Mitranon, The optimization of an autonomous real-time process using curve fitting signature signal, Proceedings of the IEEE International Conference on Robotics, Automation and Mechatronics (RAM 2008), Chengdu, China, June 2008.