Search results for: Network monitoring
1250 Data Traffic Dynamics and Saturation on a Single Link
Authors: Reginald D. Smith
Abstract:
The dynamics of User Datagram Protocol (UDP) traffic over Ethernet between two computers are analyzed using nonlinear dynamics which shows that there are two clear regimes in the data flow: free flow and saturated. The two most important variables affecting this are the packet size and packet flow rate. However, this transition is due to a transcritical bifurcation rather than phase transition in models such as in vehicle traffic or theorized large-scale computer network congestion. It is hoped this model will help lay the groundwork for further research on the dynamics of networks, especially computer networks.Keywords: congestion, packet flow, Internet, traffic dynamics, transcritical bifurcation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151249 Evolutionary Algorithms for the Multiobjective Shortest Path Problem
Authors: José Maria A. Pangilinan, Gerrit K. Janssens
Abstract:
This paper presents an overview of the multiobjective shortest path problem (MSPP) and a review of essential and recent issues regarding the methods to its solution. The paper further explores a multiobjective evolutionary algorithm as applied to the MSPP and describes its behavior in terms of diversity of solutions, computational complexity, and optimality of solutions. Results show that the evolutionary algorithm can find diverse solutions to the MSPP in polynomial time (based on several network instances) and can be an alternative when other methods are trapped by the tractability problem.Keywords: Multiobjective evolutionary optimization, geneticalgorithms, shortest paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27331248 Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms
Authors: Daniela Matei, Radu Matei
Abstract:
In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.Keywords: Diabetic retinopathy, pathology detection, cellular neural networks, analog algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20791247 A New Internal Architecture Based on Feature Selection for Holonic Manufacturing System
Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani
Abstract:
This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine dataset, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.Keywords: Artificial Neural Networks, Holonic Approach, Feature Selection, Bee Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801246 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump
Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison
Abstract:
Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.
Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16871245 The Temperature Effects on the Microstructure and Profile in Laser Cladding
Authors: P. C. Chiu, Jehnming Lin
Abstract:
In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.Keywords: Laser cladding, temperature, profile, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10681244 Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-
Authors: Hironori Kakuta, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.
Keywords: Condenser microphone, Flow rate estimation, Piping vibration, Water pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23271243 Power Control in a Doubly Fed Induction Machine
Authors: A. Ourici
Abstract:
This paper proposes a direct power control for doubly-fed induction machine for variable speed wind power generation. It provides decoupled regulation of the primary side active and reactive power and it is suitable for both electric energy generation and drive applications. In order to control the power flowing between the stator of the DFIG and the network, a decoupled control of active and reactive power is synthesized using PI controllers.The obtained simulation results show the feasibility and the effectiveness of the suggested methodKeywords: Doubly fed induction machine , decoupled power control , vector control , active and reactive power, PWM inverter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23741242 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.
Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10571241 Effect of Tillage Technology on Species Composition of Weeds in Monoculture of Maize
Authors: S. Chovancova, F. Illek, J. Winkler
Abstract:
The effect of tillage technology of maize on intensity of weed infestation and weed species composition was observed at experimental field. Maize is grown consecutively since 2001. The experimental site is situated at an altitude of 230 m above sea level in the Czech Republic. Variants of tillage technology are CT: plowing – conventional tillage 0.22 m, MT: loosening – disc tillage on the depth of 0.1 – 0.12 m, NT: direct sowing – without tillage. The evaluation of weed infestation was carried out by numerical method in years 2012 and 2013. Within the monitoring were found 20 various species of weeds. Conventional tillage (CT) primarily supports the occurrence of perennial weeds (Cirsium arvense, Convolvulus arvensis). Late spring species (Chenopodium album, Echinochloa crus-galli) were more frequently noticed on variants of loosening (MT) and direct sowing (NT). Different tillage causes a significant change of weed species spectrum in maize.
Keywords: Weeds, maize, tillage, loosening, direct sowing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20281240 Infrared Face Recognition Using Distance Transforms
Authors: Moulay A. Akhloufi, Abdelhakim Bendada
Abstract:
In this work we present an efficient approach for face recognition in the infrared spectrum. In the proposed approach physiological features are extracted from thermal images in order to build a unique thermal faceprint. Then, a distance transform is used to get an invariant representation for face recognition. The obtained physiological features are related to the distribution of blood vessels under the face skin. This blood network is unique to each individual and can be used in infrared face recognition. The obtained results are promising and show the effectiveness of the proposed scheme.Keywords: Face recognition, biometrics, infrared imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14231239 An Analysis of Global Stability of Cohen-Grossberg Neural Networks with Multiple Time Delays
Authors: Zeynep Orman, Sabri Arik
Abstract:
This paper presents a new sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for Cohen-Grossberg neural networks with multiple time delays. The results establish a relationship between the network parameters of the neural system independently of the delay parameters. The results are also compared with the previously reported results in the literature.Keywords: Equilibrium and stability analysis, Cohen-Grossberg Neural Networks, Lyapunov Functionals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13851238 A Model for Study of the Defects in Rolling Element Bearings at Higher Speed by Vibration Signature Analysis
Authors: Abhay Utpat, R. B. Ingle, M. R. Nandgaonkar
Abstract:
The vibrations produced by a single point defect on various parts of the bearing under constant radial load are predicted by using a theoretical model. The model includes variation in the response due to the effect of bearing dimensions, rotating frequency distribution of load. The excitation forces are generated when the defects on the races strike to rolling elements. In case of the outer ring defect, the pulses generated are with periodicity of outer ring defect frequency where as for inner ring defect, the pulses are with periodicity of inner ring defect frequency. The effort has been carried out in preparing the physical model of the system. Different defect frequencies are obtained and are used to find out the amplitudes of the vibration due to excitation of the bearing parts. Increase in the radial load or severity of the defect produces a significant change in bearing signature characteristics.Keywords: Condition monitoring, defect frequency, rolling element, vibration response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27591237 Methods for Better Assessment of Fatigue and Deterioration in Bridges and Other Steel or Concrete Constructions
Authors: J. Menčík, B. Culek, Jr., L. Beran, J. Mareš
Abstract:
Large metal and concrete structures suffer by various kinds of deterioration, and accurate prediction of the remaining life is important. This paper informs about two methods for its assessment. One method, suitable for steel bridges and other constructions exposed to fatigue, monitors the loads and damage accumulation using information systems for the operation and the finite element model of the construction. In addition to the operation load, the dead weight of the construction and thermal stresses can be included into the model. The second method is suitable for concrete bridges and other structures, which suffer by carbonatation and other degradation processes, driven by diffusion. The diffusion constant, important for the prediction of future development, can be determined from the depth-profile of pH, obtained by pH measurement at various depths. Comparison with measurements on real objects illustrates the suitability of both methods.
Keywords: Bridges, carbonatation, concrete, diagnostics, fatigue, life prediction, monitoring, railway, simulation, structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131236 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: Baby care system, internet of things, deep learning, machine vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19031235 Spatial Analysis and Statistics for Zoning of Urban Areas
Authors: Benedetto Manganelli, Beniamino Murgante
Abstract:
The use of statistical data and of the neural networks, capable of elaborate a series of data and territorial info, have allowed the making of a model useful in the subdivision of urban places into homogeneous zone under the profile of a social, real estate, environmental and urbanist background of a city. The development of homogeneous zone has fiscal and urbanist advantages. The tools in the model proposed, able to be adapted to the dynamic changes of the city, allow the application of the zoning fast and dynamic.
Keywords: Homogeneous Urban Areas, Multidimensional Scaling, Neural Network, Real Estate Market, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331234 Distribution Centers Reliability Cost in Capacitated Facility Location Problem
Authors: Mehdi Seifbarghy, Sajjad Jalali, Seyed Habib A. Rahmati
Abstract:
Recently studies in area of supply chain network (SCN) have focused on the disruption issues in distribution systems. Also this paper extends the previous literature by providing a new biobjective model for cost minimization of designing a three echelon SCN across normal and failure scenarios with considering multi capacity option for manufacturers and distribution centers. Moreover, in order to solve the problem by means of LINGO software, novel model will be reformulated through a branch of LP-Metric method called Min-Max approach.Keywords: Scenario programming, Distribution, Multi-echelon supply chain design, Reliable facility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451233 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS Diode, electro-thermal, SPICE Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19591232 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations
Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi
Abstract:
An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .
Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17821231 Evaluating Hurst Parameters and Fractal Dimensions of Surveyed Dataset of Tailings Dam Embankment
Authors: I. Yakubu, Y. Y. Ziggah, C. Yeboah
Abstract:
In the mining environment, tailings dam embankment is among the hazards and risk areas. The tailings dam embankment could fail and result to damages to facilities, human injuries or even fatalities. Periodic monitoring of the dam embankment is needed to help assess the safety of the tailings dam embankment. Artificial intelligence techniques such as fractals can be used to analyse the stability of the monitored dataset from survey measurement techniques. In this paper, the fractal dimension (D) was determined using D = 2-H. The Hurst parameters (H) of each monitored prism were determined by using a time domain of rescaled range programming in MATLAB software. The fractal dimensions of each monitored prism were determined based on the values of H. The results reveal that the values of the determined H were all within the threshold of 0 ≤ H ≤ 1 m. The smaller the H, the bigger the fractal dimension is. Fractal dimension values ranging from 1.359 x 10-4 m to 1.8843 x 10-3 m were obtained from the monitored prisms on the based on the tailing dam embankment dataset used. The ranges of values obtained indicate that the tailings dam embankment is stable.Keywords: Hurst parameter, fractal dimension, tailings dam embankment, surveyed dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7591230 Heart Rate-Determined Physical Activity In New Zealand School Children: A Cross- Sectional Study
Authors: Michael J. Hamlin, Mick Grimley, Vicki Cowley, Chris D. Price, Jill M. Hargreaves, Jenny J. Ross
Abstract:
The aim of this study was to examine current levels of physical activity determined via heart rate monitoring. A total of 176 children (85 boys, 91 girls) aged 5-13 years wore sealed Polar heart rate monitors for at least 10 hours per day on at least 3 days. Mean daily minutes of moderate to vigorous-intensity physical activity was 65 ± 43 (mean ± SD) for boys and 54 ± 37 for girls. Daily minutes of vigorous-intensity activity was 31 ± 24 and 24 ± 21 for boys and girls respectively. Significant differences in physical activity levels were observed between school day and weekends, boys and girls, and among age and geographical groups. Only 36% of boys and 22% of girls met the New Zealand physical activity guideline. This research indicates that a large proportion of New Zealand children are not meeting physical activity recommendations.
Keywords: activity guidelines, moderate activity, sedentary, vigorous activity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001229 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.
Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4841228 A High Accuracy Measurement Circuit for Soil Moisture Detection
Authors: Sheroz Khan, A. H. M. Zahirul Alam, Othman O. Khalifa, Mohd Rafiqul Islam, Zuraidah Zainudin, Muzna S. Khan, Nurul Iman Muhamad Pauzi
Abstract:
The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.Keywords: Analog–digital Conversion, Bridge Circuits, Intelligent sensors, Pulse Time Modulation, Relaxation Oscillator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40241227 A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix
Authors: Mehran Yazdi, Kazem Gheysari
Abstract:
In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.
Keywords: Biometrics, fingerprint classification, gray level cooccurrence matrix, regular texture representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19671226 Continuous Wave Interference Effects on Global Position System Signal Quality
Authors: Fang Ye, Han Yu, Yibing Li
Abstract:
Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18821225 Modeling of Crude Oil Blending via Discrete-Time Neural Networks
Abstract:
Crude oil blending is an important unit operation in petroleum refining industry. A good model for the blending system is beneficial for supervision operation, prediction of the export petroleum quality and realizing model-based optimal control. Since the blending cannot follow the ideal mixing rule in practice, we propose a static neural network to approximate the blending properties. By the dead-zone approach, we propose a new robust learning algorithm and give theoretical analysis. Real data of crude oil blending is applied to illustrate the neuro modeling approach.Keywords: Neural networks, modeling, stability, crude oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22631224 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.Keywords: Fuzzy time series, neural network, forecasting error, average error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911223 Human Motion Regeneration in 2-Dimension as Stick Figure Animation with Accelerometers
Authors: Alpha Agape Gopalai, Darwin Gouwanda, S.M.N. Arosha Senanayake
Abstract:
This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.Keywords: Motion Regeneration, Virtual Instrumentation, Wireless Accelerometers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301222 XML based Safe and Scalable Multi-Agent Development Framework
Authors: Rinkaj Goyal, Pravin Chandra, Yogesh Singh
Abstract:
In this paper we describe our efforts to design and implement an agent development framework that has the potential to scale to the size of any underlying network suitable for various ECommerce activities. The main novelty in our framework is it-s capability to allow the development of sophisticated, secured agents which are simple enough to be practical. We have adopted FIPA agent platform reference Model as backbone for implementation along with XML for agent Communication and Java Cryptographic Extension and architecture to realize the security of communication information between agents. The advantage of our architecture is its support of agents development in different languages and Communicating with each other using a more open standard i.e. XMLKeywords: Agent, Agent Development Framework, Agent Coordination, Security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211221 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models
Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed
Abstract:
The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE. Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.
Keywords: Simulation model, misalignment, cogs missing and vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888