
 

 

  
Abstract—The vibrations produced by a single point defect on 

various parts of the bearing under constant radial load are predicted 
by using a theoretical model. The model includes variation in the 
response due to the effect of bearing dimensions, rotating frequency 
distribution of load. The excitation forces are generated when the 
defects on the races strike to rolling elements. In case of the outer 
ring defect, the pulses generated are with periodicity of outer ring 
defect frequency where as for inner ring defect, the pulses are with 
periodicity of inner ring defect frequency. The effort has been carried 
out in preparing the physical model of the system. Different defect 
frequencies are obtained and are used to find out the amplitudes of 
the vibration due to excitation of the bearing parts. Increase in the 
radial load or severity of the defect produces a significant change in 
bearing signature characteristics.  
 

Keywords—Condition monitoring, defect frequency, rolling 
element, vibration response.  

I. INTRODUCTION 
HE main source of the vibration in the rolling bearing are 
defects on the races and the rolling element. Vibration 

transmission through rolling element is investigated in order 
to aid signal interpretation for using in the condition 
monitoring [1,2].Rolling element bearings are found in two 
basic configurations depending upon whether they use ball or 
roller type elements. The most popular rolling bearing is 
single row deep groove ball bearing and this will be 
considered for the case of radial contact. Vibration response 
measurement is an important and effective technique for the 
detection of defects in rolling element bearings [3]. Even a 
geometrically perfect bearing under radial load may generate 
vibration due to time varying contact forces which exist 
between the various bearing components. However, the nature 
of vibration response changes with the presence of defects in 
various bearing elements. The localized bearing defects 
include cracks, pits caused primarily due to fatigue on the 
rolling surfaces. When such a defect on one surface strikes it’s 
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mating surface, a pulse of short duration is generated which 
excites vibration of the rotor-bearing system [4-6]. Vibration 
measurement in both time domain and frequency domain has 
been utilized for condition monitoring of bearings. The 
frequency domain approach, which essentially means the 
spectral analysis of vibration signal, is widely used for bearing 
defect detection. Many techniques have also been attempted to 
improve the signal to noise ratio. Prediction of amplitude 
becomes difficult because of the complex nature of the system 
resulting from assembly of bearing elements and mounting of 
the same on the shaft and housing. However, McFadden [1] 
studied that when a defect in one surface of a rolling bearing 
strikes another surface, it produces an impulse which may 
excite resonances in the bearing. As the bearing rotates, these 
impulses will occur periodically with a frequency which is 
determined uniquely by the location of the defect, may be it 
on the inner ring, outer ring, or one of the rolling elements. 
With large defects and medium operating speeds, most 
methods of detection will work satisfactorily but at low speeds 
with small defects, problems arise; Smith [3] describes work 
on measurements at low speeds and discusses the difficulties 
which arise. Triaxial vibration measurements were taken at 
each end of the coupling on the motor and rotor bearing 
housings. The results indicate that bad bearing has a strong 
effect on the vibration spectra.  The results have demonstrated 
that each one of these techniques is useful to detect problems 
in roller bearings. However, very little research has been done 
to correlate the amplitudes of these spectral components at 
higher speed with the extent of defect, though such a 
correlation will be of immense help for diagnostic purpose. 
There is scope in the study of the bearing signatures at higher 
speed .This paper emphasis on the development of the 
mathematical expression related to the amplitude of the 
vibrations produced due to excitation forces caused by 
striking of the defect with mating surfaces.   

II.  FORMULATION OF THE MODEL 
For the rotor bearing system subjected to external 

excitations, number of models are proposed, includes two 
degree and three degree of freedoms. Researchers proposed 
three degree of freedom model with spring dashpot system. 
The model considers the outer race to be rigidly mounted in 
the housing and the inner race to be rigidly mounted on the 
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shaft and thus neglects the flexural vibration of the races. The 
rotor bearing system has been modeled with the same 
consideration in the present work. The extended portion of the 
shaft from right support bearing is considered as cantilever 
and test bearing is mounted on the same part for measurement 
of the radial vibrations. 

 

 
Fig. 1 Shaft for locating the test bearing 

 

 
Fig. 2 Physical model of the system 

 
The three DOF system is as shown in Fig. 2. For the rotor 

bearing system , k1 is Stiffness of the cantilever portion of the 
shaft i.e Load at test bearing divided by static deflection at 
that point. m1 is sum of mass of inner race & effective mass of 
extended portion of shaft at point of   suspension of test 
bearing, m2 is combined effect of mass of housing & mass of 
outer race, m3 is sum of mass due to load actually applied & 
effective mass of the load system,  k3 is stiffness of the loading 
arrangement and k2 is linerised bearing stiffness coefficient.         
i.e. 

                    ]max/[ 5.02 rPk CC −= δ                             (1)                                                                            
Where, PC is total load capacity of bearing, δmax is maximum 
deflection in the direction of the radial load and Cr is dimetral 
clearance as shown in Fig. 3. Stiffness of the rolling element 
bearing is important parameter and it depends upon the 
relationship between maximum rolling element load & the 
applied load and on the load distribution among various 
elements. As explained by Harris [8], the load on the rolling 
element at any angle φ from the maximum load direction is 
given by; 

n 
]2/)cos1(1[max)( εφφ −−== PPPc for  11 φφφ <<−  

                 (2)    
Where, Load distribution factor, ε  = 0.5 ( 1- Cr / 2 δmax) 

& n is 3/2 for ball bearing. 

 
                    Fig. 3 Dimensions of the ball bearing 

 
At any other position, the )(φP is zero. The load zone 

depends upon the load distribution factor as shown in Fig. 4. 
The maximum rolling element load is, maxmax δ×= dfkP where 

dfk  is deformation constant as calculated by Harris [8].        
The total applied load can be obtained by adding the forces 

shared by the individual rolling elements in the load zone as 
shown in Fig. 4. But the value of both maxδ & 1φ   depends 
upon the magnitude of applied load, Pc. Hence some iterative 
methods are used for solving above equation. Actually the 
stiffness coefficient of rolling bearing is Non Linear, but as 
reviewed by several researchers linearised stiffness coefficient 
may be assumed if variation from equilibrium due to dynamic 
forces is small. Also by adding the damping due to each 
element in the load zone, the total damping coefficient ,c for 
complete bearing is calculated and is expressed by;            

                                     ∑
−=

=
1

1

cos
φ

φφ
φ φcc                              (3a)  

 
   a) 090,0.15.0,0 〉〈〈〈 φεrC  
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b) 090,5.0,0 ±=== φεrC  

 

    
                                     c) 0900,5.00,0 〈〈〈〈〈 φεrC       
                              

Fig. 4 Load zones according to load distribution factor 
 

Where, φc  = elemental damping constant and    

oi

oi

cc
ccc
+

=φ                                   (3b)                                                                                                

Where ci & co = Ball damping coefficient due contact with 
inner race & outer race respectively [8,10].                                  

III. DIFFERENTIAL EQUATION FOR THE SYSTEM 
For the multi degree of freedom linear system subjected to 

external excitation, the equation of the motion is given by; 

     ( )tQkx
dx
dyc

dx

ydm i=++2

2                         (4).  

Where m, c and k represents mass ,damping and stiffness 
matrices respectively .Qi(  i =1, 2, 3) is the excitation force 
due to defect, acting on mass mi at time t and xi is the resultant 
displacement at the same time t. However, the force Q3 is 
always equal to zero because a defect on a bearing element 
cannot cause the excitation of a force on mass m3.  

IV. CHARACTERISTIC DEFECT FREQUENCIES 
The pulses obtained are depend upon the location of the 

defects whether it is on outer ring, inner ring or on the rolling 
element. The vibrations of the ball bearing with the defect can 
be known by emphasizing on the various defect frequencies. 

The outer ring of the bearing is supposed to be fixed and the 
inner ring is revolving with the shaft rotation frequency of   fs . 
With this the frequency of the rotation of the cage fc   and ball 
revolution frequency, fb is given by, 

                           ⎥
⎦

⎤
⎢
⎣

⎡
−= α2cos1

2 2

2

D
d

d
Dff s

b                        (a)                 

&                         ⎥⎦
⎤

⎢⎣
⎡ −= αcos1

2 D
dff s

c                         (b) 

Where d & D are the rolling element diameter and pitch 
diameter respectively. If there is a defect on the inner race, it 
strikes the balls which are revolving at the speed of fc. But 
inner race itself is revolving with the shaft speed fs. During 
the time the bearing makes one complete revolution, the 
defect comes in to contact with certain numbers of the balls, 
let Z.  Hence inner race defect frequency is given by 
, )( fcfsZif −= .  

                   
⎥⎦
⎤

⎢⎣
⎡ +=∴ αcos1

2 D
dZff s

i                          (c) 

In case of defect on the outer race, Z number of balls strikes 
the defect with the cage speed of fc . Hence the outer race 
defect frequency is Z times the cage frequency which is given 
by; co Zff = .   

                      
⎥⎦
⎤

⎢⎣
⎡ −=∴ αcos1

2 D
dZff s

o                        (d) 

In case of the defect on the ball, both outer race and inner 
race comes in contact with the defect when ball completes one 
revolution. For this case the frequency of the vibration pulses 
arising from the defect is calculated by;  

bbd ff 2=  

                     
⎥
⎦

⎤
⎢
⎣

⎡
−=∴ αcos1 2

2

D
d

d
Dff s

bd
                      (e) 

Fig. 5 shows the cross section of the bearing with various 
defect frequencies.  

V. VIBRATION RESPONSE FOR DEFECTS AT VARIOUS 
POSITIONS 

The excitation of the system is caused by pulses generated 
due to the interaction of the defect with mating elements. 
 

 
Fig. 5 Characteristic defect frequencies on bearing cross section 
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Thus, 
Q1 results when pulses are generated on the inner race or 

mass m1. Q2 results when pulses are generated on the outer 
race or mass m2. Q3 is always zero because localized defect on 
bearing cannot cause any force to be exerted on mass m3. 

The load distribution and generation of the excitation force 
for radial vibration is as shown in Fig. 6 below.  

 

 
Fig. 6 Load distribution and generation of the excitation force for 

radial vibration 
 
Hence the excitation force in the direction of the measurement 
is given by, 

        .cos)()()( φφPtqtQ =                    (5a) 
Where, )(tq  is generated pulse form and )(φP is the load at 

point of excitation. 
The generated wave form is considered as rectangular and 
periodic in nature, can be expanded in the Fourier series as 
follows; 

             .)( cos∑+=
s s

ftqoqtq                       (5b) 

Where, 
- f  is frequency of generation pulses & depends upon 
location of the defect. 
 -

0q & sq  are Fourier coefficients as given below; 

T
BHq =0

      

&                               
T
BssHqs ππ sin)/2(= ;                      (5c)            

 
where, H is pulse height & B is pulse width which is ratio of 
defect width to the relative velocity between mating surfaces, 

rυ  and is given by, 

                            
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= αυ 2

2

2

cos1
4 D

dDf
r

s .                 (5d) 

For stationary defect i.e. outer race defect, the load 
)(φP and angular position )(φ  remains constant. But for the 

inner race defect and the rolling element defect, point of 

excitation as well as load at the point of the excitation changes 
with the time. Load is evenly distributed and can be expanded 
in the Fourier series as, 

                          .)( cos0 ∑+=
r

rrppP φφ                     (6a) 

where,  
 

ft=φ ; and f is the frequency depends upon defect 
location. The 

0
p  & 

r
p are the Fourier coefficients and as 

explained in the reference [8], they can be written as; 

∫
−

=
2/

2/
)(1

0
T

T
dtP

T
P φ  

&             

                        
∫

−
=

2/

2/
cos)(2 T

T
r dtrP

T
P φφ

                    (6b) 
 
Now from equation (2), for non zero value of )(φP ,  

1]2/)cos1[( <− εφ . Hence, equation (2) can be expanded 
in binomial series as, 
 

].coscoscos[)( 32 3210max φφφφ BBBBPP +++=  
                                                                                             (6c) 
So from equation (6b), 

].coscoscos[ 1121110
max 32 3

0
φφφφ

π
BBBBPP +++=                        

&                                                                                                                    

.

]

sin2[

)3(
)3sin(

)3(
)3sin(

)2(
)2sin(

)2(
)2sin(

)1(
)1sin(

)1(
)1sin(
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11
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                                                                                (6d) 
                          

Where,  
      

2
5

48
)2)(1(

2
3

8
)1(

2
1

32
0 ×−−−×−+−=

εεε
nnnnnnB  
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3
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)2)(1(

2
1

8
)1(
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)2)(1(2
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)1(
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nnnnnnB

 

      
4
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)2)(1(

33 ×−−=
ε
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VI. CALCULATION OF THE FORCES OF EXCITATION 
During the experimentation the transducer will be probably 

placed on the housing and senses the vibrations of the outer 
ring only. Hence the solution has been obtained for amplitudes 
of vibration of mass m2 for the defect on the different bearing 
elements. 

A. A Defect on the Outer Ring 
Consider the single defect on the outer ring of the bearing at 

angular position of ψ with respect to the transducer. The 
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interaction of this defect with rolling element causes the force 
Q2(t) to be excited. Hence Q1(t) is assumed to be zero. So 
from the equation (5a), 

                .cos)()()(2 ψψPtqtQ =                         (7a) 
The generated pulse )(tq has periodicity of of   & can be 
obtained from equation (5b). The load at angle ψ  i.e. 

)(ψP can be obtained from equation (2). Hence the excitation 
force  )(.)( 22 ofQeitQ  is calculated by putting above values 
in equation (7a).   

B. A Defect on the Inner Ring  
The interaction of the single defect on inner ring with 

rolling element cause excitation of force Q1(t) & force Q2(t) 
can be assumed  zero. Under this condition the pulses are 
generated at inner race defect frequency if  & defect itself 
moves at the shaft frequency sf .The excitation force can be 
expressed as from equation (5a) as, 

             .cos)()()(1 tftfPtqtQ ss=                     (8a) 

The generated pulse )(tq has periodicity of  if   & can be 
obtained from equation (5b).  

The load P having periodicity of sf  & can be obtained 
from equation (6a) as, 

               .)( cos∑+=
r

tfrt sros ppfP                      (8b)  

The Fourier constants p0  &  pr are obtained as explained in 
the equation (6d). Where 21 Tsf ×=φ .  

Hence the excitation force Q1(t) is calculated by putting 
above values in equation (8a).                                                                                                                                

The excitation force vector for an inner race defect is sum 
of harmonic components having the same frequency as that of  
Q1(t).  

C. A Defect on the Ball 
The defect on rolling element strikes both inner & outer 

race. Rolling element revolves about its own axis at frequency 
bf  and rotates at cage speed of cf . Q1(t) & Q2(t) are excited 

due to interaction of defect with inner race and outer race 
respectively. Defect strikes to inner race with frequency bf  
and given by equation (5a) as,  

.cos)()()(1 tftfPtfqtQ ccb=                  (9) 

The expression for the pulse )( tfq b  having periodicity bf  
can be obtained from equation (5b) and Fourier constants are 
obtained from equation (5c). 

 The load P, having periodicity of cf  & can be obtained 
from equation (6a). 
The Fourier constants p0 & pr are obtained as explained in the 
equation (6d). Where 21 Tcf ×=φ . 

The defect on rolling element strikes outer race after time 
pulse bf/π  from the excitation after )(1 tQ . But this time 
period will not have significant effect on  P  & position tfc.  
of rolling element. Hence )(2 tQ  is given by; 

          .cos)()()( ...2 tftfPtfqtQ ccb π+=               (10) 
Hence the excitation forces are calculated by putting above 

values in equation (9) & (10). The pulse generated by 
interaction of defect with inner race and outer race are 
assumed to be have same amplitude and nature.  

After the necessary assumptions and solving the number of 
equations obtained in section V, the various values are 
obtained. After feeding these values in to computer program, 
numerical results for vibratory amplitude of the mass m2 i.e. 
housing can be obtained. These values are plotted as 
amplitude vs frequency.  

VII.  ANALYSIS AND SOLUTION 
The expressions were developed in the preceding sections 

for the amplitude of the impulses produced at the location of 
the defect in a bearing under radial load. This gives an 
expression for the amplitude of the demodulated response 
produced at the transducer by a defect in a bearing under 
radial load. 

Consider a rolling element bearing with a single point 
defect on its inner ring, outer ring and rolling element.  At 
time t = 0, the defect is in contact with one of the rolling 
elements and lies at the centre of the load zone on the line of 
action of the applied radial load. A vibration transducer is 
fixed on the bearing in the centre of the load zone with its 
sensitive axis parallel to the applied load. The mechanical 
system is symmetrical about the line of the applied load. 

In order to obtain the numerical results for the amplitudes 
of acceleration and velocity of the housing, an 6204 deep 
groove ball bearing with normal clearance has been 
considered. Dimensions of the 6204 bearing are as follows: 20 
mm bore; 47 mm outside diameter; and 33 mm pitch diameter. 
They have 8 balls each of 7.95 mm diameter. The nominal 
contact angle is 0(zero) degree. A diametral clearance of 
0.05mm has been considered in the present study. The bearing 
has been assumed to be mounted on a shaft rotating at higher 
speed of 6000 rpm and operating at a radial load of 25 kg. For 
the bearing geometry and spindle speed as mentioned above, 
the important frequency components and characteristics defect 
frequencies fs, fo, fi, fc, fb, & fbd  as explained in section IV are 
100Hz, 303.64Hz, 496.36Hz 37.955Hz,195.502 and 
391.024Hz respectively. The different sections of the 
extended portion of the shaft shown in Fig. 1 have lengths of 
25mm each. The diameters of the corresponding sections are 
30, 25, 20 mm. With the help of these dimensions and 
following the procedure discussed in section III, the elements 
of the mass, stiffness and damping matrices can be obtained. 
A computer program has been developed, which generates the 
mass, stiffness and damping matrices from these elements and 
also calculates the elements of the excitation force vectors for 
various types of localized defects following the procedure 
discussed in sections V and VI. The program then computes 
the amplitudes of acceleration of the vibrations of the housing 
for significant frequency components with the help of the 
matrix inversion method. The results, thus obtained, have 
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been plotted in Figures. 

 
Fig. 7a Amplitude vs frequency for outer ring defect at φ = 0 and 

defect width 0.5mm 
 
 

 
Fig. 7b Amplitude vs defect width for outer ring defect at φ = 0    

            
Fig. 7c Amplitude vs defect position for outer ring defect at defect 

width of 0.5 mm 
 

 
Fig. 8a Amplitude vs frequency for inner ring defect at defect width 

of 0.5 mm 

     
Fig. 8b Amplitude vs defect width for inner ring defect at φ = 0 
 

       
Fig. 9a Amplitude vs frequency for defect on a ball at defect width 

of 0.5 mm 
 

 
Fig. 9b Amplitude vs defect width for defect on a ball at φ = 0 

 
When the defect is in outer ring, the amplitude vs frequency 

graph shows the peak at outer ring defect frequency. In Fig. 
7a, it is clearly observed that the peak amplitude is observed at 
outer ring defect frequency and its multiples. The magnitude 
of the amplitude has a great impact on the position of the 
defect. As the location of the defect varies with respect to the 
transducer in the load zone, the peak of amplitude varies and 
becomes zero outside load zone as shown in Fig. 7c. Whereas 
Fig. 7b gives variation in the amplitude with the variation in 
defect size. It is also clear from Fig. 7b that the maximum 
amplitude is observed when the size of defect is 1mm. Fig. 8a 
depicts the plot of amplitude vs  frequency for the defect on 
the inner ring. As the inner ring is rotating at the shaft speed, 
the shaft rotation frequency and its multiples are also 
observed. In this case the inner race defect frequency 
amplitude shows the highest in all the peaks. The peak 
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amplitude varies with the size of inner ring defect as shown in 
the Fig. 8b. It also depicts maximum value of the peak at 
defect size of 1 mm as like in Fig. 7b.  When the defect is on 
the ball, it strikes with the outer ring as well as inner ring. The 
number of balls are moving with the cage speed. The 
amplitude of the cage frequency and its multiples are as 
shown in the Fig. 9a. The amplitude of the ball defect 
frequency is the highest amongst all the peaks. As like outer 
ring and inner ring defect, the peak amplitude of the ball 
defect also varies with the defect size as shown in the Fig 9b. 
The comparison has been made for all above graphs and it is 
clear that the level of vibrations due to defect in rolling 
element are much higher than due to defects in outer ring and 
inner ring. The values of the amplitudes predicted above are 
theoretical and there may be slightly variation with exact 
values. Whereas the efforts carried out in the above work can 
be used to study the approximate amplitude levels of the 
vibrations at various defect frequencies at comparatively 
higher speed. 

VIII. CONCLUSION 
The characteristic defect frequencies at higher speed are 

obtained and the corresponding peak amplitudes are noted for 
deep groove ball bearing. The effort has been carried out in 
preparing the physical model of the system. The peak 
amplitudes for the various defect frequencies are observed for 
the various parameters such as defect size and the position of 
the defect especially in case of outer ring defect. In case of 
outer ring defect and inner ring defect, the maximum value of 
peak is for the same defect size where as rolling element 
defect gives maximum value of the peak at higher defect size. 
Also the maximum peak amplitude is observed in case of 
rolling element defect frequency than other defect frequencies. 
The magnitude of the amplitude has a great impact on the 
variation of the load. Further study emphasis on the increase 
in the amplitude levels of the defect frequency with increase 
in the load at test bearing. Above predicted absolute values 
may used to compare with the values obtained from the set-up 
of the rotor bearing system. 
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