A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.
Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1129874
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066References:
[1] IBGE (Instituto Brasileiro de Geografia e Estatística). Sistema IBGE de Recuperação Automática - SIDRA, Retrieved from http://www.sidra.ibge.gov.br/bda/agric/default.asp?z=t&o=11&i=P, in October 18, 2016.
[2] MAPA (Ministério da Agricultura Pecuária e Abastecimento), Estatísticas e Dados Básicos de Economia Agrícola, Retrieved from http://www.agricultura.gov.br/arq_editor/Pasta%20de%20Setembro%20-%202016.pdf, in October 10, 2016.
[3] M. Rabelo, “Faeg participa do Congresso Brasileiro de Tomate Industrial”. Retrieved from: http://sistemafaeg.com.br/noticias/ 10796-faeg-participa-do-congresso-brasileiro-de-tomate-industrial, in May, 2015.
[4] E. M. Neves, L. Rodrigues, M. Dayoub, and D. S. Dragone, “Bataticultura: dispêndios com defensivos agrícolas no quinquênio 1997-2001,”.Batata Show, vol. 6, pp. 22-23, 2003.
[5] USDA (United States Department of Agriculture), USABlight Project, Retrieved from https://usablight.org/node/29, in October 4, 2016.
[6] F.M. Correa, J.S.S. Bueno Filho, and M.G.F. Carmo, “Comparison of three diagrammatic keys for the quantification of late blight in tomato leaves,” Plant Pathology, vol. 58, pp.:1128-1133,2009.
[7] J.R. Macedo, C.L. Capeche, A. Melo da S., and S.B. Bhering, “Recomendações Técnicas para a Produção do Tomate Ecologicamente Cultivado,” Manejo do Solo - Circular Técnica, vol. 33. Rio de Janeiro: Embrapa Solos, 2005.
[8] E.S.G. Mizubuti, J.M.N. Maziero, L.A. Maffia, F. Haddad, and M.A Lima, “CGTE Program: Simulation, Epidemiology and Management of Late Blight,” in Global Initiative on Late Blight Conference, Hamburg, Germany, 2002.
[9] W.F. Becker, “Validação de dois sistemas de previsão para o controle da requeima do tomateiro na região de Caçador, SC,” Agropecuária Catarinense, vol.18, pp. 63-68, 2005.
[10] A. Saxena, B.K. Sarma, and H.B. Singh, “Effect of Azoxystrobin Based Fungicides in Management of Chilli and Tomato Diseases,” Proced. National Academy of Sciences, India:Springer, 2014.
[11] C. Zhang, et al. “Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato,” Theor. Appl. Genet., vol. 126, Springer-Verlag, pp.:2643-2653, 2013.
[12] D.H. Park, Y. Zhang, and B.S. Kim, “Improvement of resistance to late blight in hybrid tomato,” Hort. Environm. Biotechnol, vol. 55(2), Springer, pp.:120-124, 2014.
[13] O. Goufo, T. Mofor, and D. Ngnokam, “High Efficacy of Extracts of Cameroon Plants Against Tomato Late Blight Disease,” Agronomy for Sustainable Development, vol. 8, INRA, EDP Sciences, pp.567-573, 2008.
[14] S. Sankaran, A. Mishraa, R. Ehsani, and C. Davis, “A review of advanced techniques for detecting plant diseases,” Computers and Electronics in Agriculture, vol. 72, n.1, pp.:1-13, 2010.
[15] A.K. Mahlein, E.-C. Oerke, U. Steiner, and H.-W. Dehne, “Recent advances in sensing plant diseases for precision crop protection,” European Journal of Plant Pathology, vol. 133, n.1, pp.:197-209, 2012.
[16] R. Bugiani, et al., “Monitoring airborne concentrations of sporangia of Phytophthora infestans in relation to tomato late blight in Emilia Romagna, Italy,” International Journal of Aerobiology, vol. 11, pp.:41-46, Elsevier Science, 1995.
[17] G.K. Vianna and S.M.S. Cruz, “Análise inteligente de imagens digitais no monitoramento da requeima em tomateiros,” Anais do IX Congresso Brasileiro de Agroinformática. Cuiabá, Brazil, 2013.
[18] G.K. Vianna and S.M.S. Cruz, “Redes neurais artificiais aplicadas ao monitoramento da requeima em tomateiros,” Anais do X Encontro Nacional de Inteligência Artificial e Computacional (ENIAC), Fortaleza, Brazil, 2013.
[19] D. Nunes, C. Werly, G.K. Vianna, and S.M.S. Cruz. “Early Discovery of Tomato Foliage Diseases Based on Data Provenance and Pattern Recognition,” 5th International Provenance and Annotation Workshop (IPAW). Cologne, Germany, 2014.
[20] J.C.A. Barbedo, “Digital image processing techniques for detecting, quantifying and classifying plant diseases,” SpringerPlus, 2:660, 2013.
[21] A. Vibhute and S.K. Bodhe, “Applications of image processing in agriculture: a survey,” International Journal of Computer Applications, vol. 52, n.2, pp.:34-40, 2012.
[22] I.M. Scotford and P.C.H. Miller, “Applications of spectral reflectance techniques in Northern European cereal production: a review,” Biosyst. Eng., vol. 90, n.3, pp.:235–250, 2005.
[23] C.H. Bock, G.H. Poole, P.E. Parker, and T.R. Gottwald, “Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging,” Critical Reviews in Plant Sciences, vol. 29, n. 1-3, pp.:59–107, 2010.
[24] UCIPM – Integrated Pest Management Program of California University, Retrieved from: http://www.ipm.ucdavis.edu/DISEASE/ DATABASE/potatolateblight.html, in June, 2016.
[25] R.A. Hyre, “Progress in forecasting late blight of potato and tomato”. Plant Disease Reporter, Illinois, vol. 38, n.4, pp.: 245-253, 1954.
[26] INMET – Instituto Nacional de Meteorologia, Retrieved from: http://www.inmet.gov.br/portal/, in June 5th, 2016.
[27] T.N.H. Rebouças, et al. “Potencialidade de Fungicida e Agente Biológico no Controle da Requeima do Tomateiro”, Horticultura Brasileira, vol.32(01), 2014.