Search results for: computational models
1428 Planning of Road Infrastructure Financing: Computational Finance Viewpoint
Authors: Ornst J., Voracek J., Allouache A., Allouache D.
Abstract:
Lack of resources for road infrastructure financing is a problem that currently affects not only eastern European economies but also many other countries especially in relation to the impact of global financial crisis. In this context, we are talking about the socalled short-investment problem as a result of long-term lack of investment resources. Based on an analysis of road infrastructure financing in the Czech Republic this article points out at weaknesses of current system and proposes a long-term planning methodology supported by system approach. Within this methodology and using created system dynamic model the article predicts the development of short-investment problem in the Country and in reaction on the downward trend of certain sources the article presents various scenarios resulting from the change of the structure of financial sources. In the discussion the article focuses more closely on the possibility of introduction of tax on vehicles instead of taxes with declining revenue streams and estimates its approximate price in relation to reaching various solutions of short-investment in time.Keywords: Road financing, road infrastructure development, system dynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13961427 Convex Restrictions for Outage Constrained MU-MISO Downlink under Imperfect Channel State Information
Authors: A. Preetha Priyadharshini, S. B. M. Priya
Abstract:
In this paper, we consider the MU-MISO downlink scenario, under imperfect channel state information (CSI). The main issue in imperfect CSI is to keep the probability of each user achievable outage rate below the given threshold level. Such a rate outage constraints present significant and analytical challenges. There are many probabilistic methods are used to minimize the transmit optimization problem under imperfect CSI. Here, decomposition based large deviation inequality and Bernstein type inequality convex restriction methods are used to perform the optimization problem under imperfect CSI. These methods are used for achieving improved output quality and lower complexity. They provide a safe tractable approximation of the original rate outage constraints. Based on these method implementations, performance has been evaluated in the terms of feasible rate and average transmission power. The simulation results are shown that all the two methods offer significantly improved outage quality and lower computational complexity.
Keywords: Imperfect channel state information, outage probability, multiuser- multi input single output.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11131426 The Use of Social Networking Sites in eLearning
Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith
Abstract:
The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper commences its contribution by analyzing the various models and theories proposed in literature and amalgamate together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.
Keywords: eLearning, higher education, social network sites, student learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21761425 The Pressure Losses in the Model of Human Lungs
Authors: Michaela Chovancova, Pavel Niedoba
Abstract:
For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.
Keywords: Human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25581424 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators
Authors: Fethi Soltani, Adel Almarashi, Idir Mechai
Abstract:
Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.Keywords: Fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261423 Zero Dimensional Simulation of Combustion Process of a DI Diesel Engine Fuelled With Biofuels
Authors: Donepudi Jagadish, Ravi Kumar Puli, K. Madhu Murthy
Abstract:
A zero dimensional model has been used to investigate the combustion performance of a single cylinder direct injection diesel engine fueled by biofuels with options like supercharging and exhaust gas recirculation. The numerical simulation was performed at constant speed. The indicated pressure, temperature diagrams are plotted and compared for different fuels. The emissions of soot and nitrous oxide are computed with phenomenological models. The experimental work was also carried out with biodiesel (palm stearin methyl ester) diesel blends, ethanol diesel blends to validate simulation results with experimental results, and observed that the present model is successful in predicting the engine performance with biofuels.Keywords: Biofuels Zero Dimensional Modeling, EnginePerformance, Engine Emissions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42481422 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.
Keywords: GaN HEMT, computer-aided design & modeling, neural networks, genetic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571421 Towards Cloud Computing Anatomy
Authors: Maria Salama, Mohamed Kouta
Abstract:
Cloud Computing has recently emerged as a compelling paradigm for managing and delivering services over the internet. The rise of Cloud Computing is rapidly changing the landscape of information technology, and ultimately turning the longheld promise of utility computing into a reality. As the development of Cloud Computing paradigm is speedily progressing, concepts, and terminologies are becoming imprecise and ambiguous, as well as different technologies are interfering. Thus, it becomes crucial to clarify the key concepts and definitions. In this paper, we present the anatomy of Cloud Computing, covering its essential concepts, prominent characteristics, its affects, architectural design and key technologies. We differentiate various service and deployment models. Also, significant challenges and risks need are tackled in order to guarantee the long-term success of Cloud Computing. The aim of this paper is to provide a better understanding of the anatomy of Cloud Computing and pave the way for further research in this area.Keywords: Anatomy, Aspects, Cloud Computing, Challenges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19831420 Sequential Straightforward Clustering for Local Image Block Matching
Authors: Mohammad Akbarpour Sekeh, Mohd. Aizaini Maarof, Mohd. Foad Rohani, Malihe Motiei
Abstract:
Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.Keywords: Copy-paste forgery detection, Duplicated region, Timecomplexity, Local block matching, Sequential block clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18311419 A Robust TVD-WENO Scheme for Conservation Laws
Authors: A. Abdalla, A. Kaltayev
Abstract:
The ultimate goal of this article is to develop a robust and accurate numerical method for solving hyperbolic conservation laws in one and two dimensions. A hybrid numerical method, coupling a cheap fourth order total variation diminishing (TVD) scheme [1] for smooth region and a Robust seventh-order weighted non-oscillatory (WENO) scheme [2] near discontinuities, is considered. High order multi-resolution analysis is used to detect the high gradients regions of the numerical solution in order to capture the shocks with the WENO scheme, while the smooth regions are computed with fourth order total variation diminishing (TVD). For time integration, we use the third order TVD Runge-Kutta scheme. The accuracy of the resulting hybrid high order scheme is comparable with these of WENO, but with significant decrease of the CPU cost. Numerical demonstrates that the proposed scheme is comparable to the high order WENO scheme and superior to the fourth order TVD scheme. Our scheme has the added advantage of simplicity and computational efficiency. Numerical tests are presented which show the robustness and effectiveness of the proposed scheme.
Keywords: WENO scheme, TVD schemes, smoothness indicators, multi-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131418 The Link between Distributed Leadership and Educational Outcomes: An Overview of Research
Authors: Maria Eliophotou Menon
Abstract:
School leadership is commonly considered to have a significant influence on school effectiveness and improvement. Effective school leaders are expected to successfully introduce and support change and innovation at the school unit. Despite an abundance of studies on educational leadership, very few studies have provided evidence on the link between leadership models, and specific educational and school outcomes. This is true of a popular contemporary approach to leadership, namely, distributed leadership. The paper provides an overview of research findings on the effect of distributed leadership on educational outcomes. The theoretical basis for this approach to leadership is presented, with reference to methodological and research limitations. The paper discusses research findings and draws their implications for educational research on school leadership.Keywords: Distributed leadership, educational outcomes, leadership research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37191417 Adaptive Kernel Principal Analysis for Online Feature Extraction
Authors: Mingtao Ding, Zheng Tian, Haixia Xu
Abstract:
The batch nature limits the standard kernel principal component analysis (KPCA) methods in numerous applications, especially for dynamic or large-scale data. In this paper, an efficient adaptive approach is presented for online extraction of the kernel principal components (KPC). The contribution of this paper may be divided into two parts. First, kernel covariance matrix is correctly updated to adapt to the changing characteristics of data. Second, KPC are recursively formulated to overcome the batch nature of standard KPCA.This formulation is derived from the recursive eigen-decomposition of kernel covariance matrix and indicates the KPC variation caused by the new data. The proposed method not only alleviates sub-optimality of the KPCA method for non-stationary data, but also maintains constant update speed and memory usage as the data-size increases. Experiments for simulation data and real applications demonstrate that our approach yields improvements in terms of both computational speed and approximation accuracy.
Keywords: adaptive method, kernel principal component analysis, online extraction, recursive algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15501416 Memory Leak Detection in Distributed System
Authors: Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., Revathi P.
Abstract:
Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.Keywords: Dynamic Memory Monitoring Agent (DMMA), Cluster Computing, Memory Leak, Fault Tolerant Framework, Dynamic Memory Leak Detection (DMLD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22821415 Model-free Prediction based on Tracking Theory and Newton Form of Polynomial
Authors: Guoyuan Qi , Yskandar Hamam, Barend Jacobus van Wyk, Shengzhi Du
Abstract:
The majority of existing predictors for time series are model-dependent and therefore require some prior knowledge for the identification of complex systems, usually involving system identification, extensive training, or online adaptation in the case of time-varying systems. Additionally, since a time series is usually generated by complex processes such as the stock market or other chaotic systems, identification, modeling or the online updating of parameters can be problematic. In this paper a model-free predictor (MFP) for a time series produced by an unknown nonlinear system or process is derived using tracking theory. An identical derivation of the MFP using the property of the Newton form of the interpolating polynomial is also presented. The MFP is able to accurately predict future values of a time series, is stable, has few tuning parameters and is desirable for engineering applications due to its simplicity, fast prediction speed and extremely low computational load. The performance of the proposed MFP is demonstrated using the prediction of the Dow Jones Industrial Average stock index.Keywords: Forecast, model-free predictor, prediction, time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801414 Jobs Scheduling and Worker Assignment Problem to Minimize Makespan using Ant Colony Optimization Metaheuristic
Authors: Mian Tahir Aftab, Muhammad Umer, Riaz Ahmad
Abstract:
This article proposes an Ant Colony Optimization (ACO) metaheuristic to minimize total makespan for scheduling a set of jobs and assign workers for uniformly related parallel machines. An algorithm based on ACO has been developed and coded on a computer program Matlab®, to solve this problem. The paper explains various steps to apply Ant Colony approach to the problem of minimizing makespan for the worker assignment & jobs scheduling problem in a parallel machine model and is aimed at evaluating the strength of ACO as compared to other conventional approaches. One data set containing 100 problems (12 Jobs, 03 machines and 10 workers) which is available on internet, has been taken and solved through this ACO algorithm. The results of our ACO based algorithm has shown drastically improved results, especially, in terms of negligible computational effort of CPU, to reach the optimal solution. In our case, the time taken to solve all 100 problems is even lesser than the average time taken to solve one problem in the data set by other conventional approaches like GA algorithm and SPT-A/LMC heuristics.Keywords: Ant Colony Optimization (ACO), Genetic algorithms (GA), Makespan, SPT-A/LMC heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34711413 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite
Authors: M. Palizvan, M. H. Sadr, M. T. Abadi
Abstract:
The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.
Keywords: Homogenization, periodic boundary condition, elastoplastic properties, RVE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8581412 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles
Authors: Masood Roohi, Amir Taghavipour
Abstract:
This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.Keywords: Hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13861411 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems
Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu
Abstract:
The modeling lung respiratory system that has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the pulmonary lung system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically relevant three-dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue that produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue viscoelasticity and tidal breathing period.
Keywords: Lung deformation and mechanics, tissue mechanics, viscoelasticity, fluid-structure interactions, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23271410 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets
Authors: O. Poleshchuk, E.Komarov
Abstract:
This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.
Keywords: Interval type-2 fuzzy sets, fuzzy regression, weighted interval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22171409 Navigation Patterns Mining Approach based on Expectation Maximization Algorithm
Authors: Norwati Mustapha, Manijeh Jalali, Abolghasem Bozorgniya, Mehrdad Jalali
Abstract:
Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user-s navigation pattern. The model makes user model based on expectation-maximization (EM) algorithm.An EM algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment.Keywords: Web Usage Mining, Expectation maximization, navigation pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781408 Optimization of Distribution Network Configuration for Loss Reduction Using Artificial Bee Colony Algorithm
Authors: R. Srinivasa Rao, S.V.L. Narasimham, M. Ramalingaraju
Abstract:
Network reconfiguration in distribution system is realized by changing the status of sectionalizing switches to reduce the power loss in the system. This paper presents a new method which applies an artificial bee colony algorithm (ABC) for determining the sectionalizing switch to be operated in order to solve the distribution system loss minimization problem. The ABC algorithm is a new population based metaheuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 14, 33, and 119-bus systems and compared with different approaches available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.
Keywords: Distribution system, Network reconfiguration, Loss reduction, Artificial Bee Colony Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37601407 Statistical Analysis of Stresses in Rigid Pavement
Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela
Abstract:
Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.Keywords: concrete, FEM, pavement, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731406 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition
Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang
Abstract:
In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.
Keywords: CFD, BWR, decommissioning, upper pool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7541405 Qualitative Modelling for Ferromagnetic Hysteresis Cycle
Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira
Abstract:
In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15861404 An Analysis of Activity-Based Costing in a Manufacturing System
Authors: Derya Eren Akyol, Gonca Tuncel, G. Mirac Bayhan
Abstract:
Activity-Based Costing (ABC) represents an alternative paradigm to traditional cost accounting system and it often provides more accurate cost information for decision making such as product pricing, product mix, and make-orbuy decisions. ABC models the causal relationships between products and the resources used in their production and traces the cost of products according to the activities through the use of appropriate cost drivers. In this paper, the implementation of the ABC in a manufacturing system is analyzed and a comparison with the traditional cost based system in terms of the effects on the product costs are carried out to highlight the difference between two costing methodologies. By using this methodology, a valuable insight into the factors that cause the cost is provided, helping to better manage the activities of the company.Keywords: Activity-based costing, manufacturing systems, product costs, traditional costing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31521403 Semi-Automatic Trend Detection in Scholarly Repository Using Semantic Approach
Authors: Fereshteh Mahdavi, Maizatul Akmar Ismail, Noorhidawati Abdullah
Abstract:
Currently WWW is the first solution for scholars in finding information. But, analyzing and interpreting this volume of information will lead to researchers overload in pursuing their research. Trend detection in scientific publication retrieval systems helps scholars to find relevant, new and popular special areas by visualizing the trend of input topic. However, there are few researches on trend detection in scientific corpora while their proposed models do not appear to be suitable. Previous works lack of an appropriate representation scheme for research topics. This paper describes a method that combines Semantic Web and ontology to support advance search functions such as trend detection in the context of scholarly Semantic Web system (SSWeb).Keywords: Trend, Semi-Automatic Trend Detection, Ontology, Semantic Trend Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311402 Analysis of the Impact of NVivo and EndNote on Academic Research Productivity
Authors: Sujit K. Basak
Abstract:
The aim of this paper is to analyze the impact of literature review software on researchers. The aim of this study was achieved by analyzing models in terms of perceived usefulness, perceived ease of use, and acceptance level. Collected data were analyzed using WarpPLS 4.0 software. This study used two theoretical frameworks, namely, Technology Acceptance Model and the Training Needs Assessment Model. The study was experimental and was conducted at a public university in South Africa. The results of the study showed that acceptance level has a high impact on research productivity followed by perceived usefulness and perceived ease of use.Keywords: Technology acceptance model, training needs assessment model, literature review software, research productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29771401 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources
Authors: Jolly Puri, Shiv Prasad Yadav
Abstract:
Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using α cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.
Keywords: Multi-component DEA, fuzzy multi-component DEA, fuzzy resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20711400 Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method
Authors: Shan-Jen Cheng, Jr-Ming Miao, Sheng-Ju Wu
Abstract:
The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.
Keywords: PEMFC, numerical simulation, optimization, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25501399 Anomaly Detection using Neuro Fuzzy system
Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani
Abstract:
As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectivelyKeywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183