**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31107

##### Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators

**Authors:**
Fethi Soltani,
Adel Almarashi,
Idir Mechai

**Abstract:**

**Keywords:**
tikhonov regularization,
fourier multiplier operators,
Paley-Wiener space,
Gauss-Kronrod method
of integration

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1124367

**References:**

[1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 1948, (68):337–404.

[2] T. Matsuura, S. Saitoh and D.D. Trong, Inversion formulas in heat conduction multidimensional spaces, J. Inv. Ill-posed Problems 2005, (13):479–493.

[3] T. Matsuura and S. Saitoh, Analytical and numerical inversion formulas in the Gaussian convolution by using the Paley-Wiener spaces, Appl. Anal. 2006, (85):901–915.

[4] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 1983,89:74–78.

[5] S. Saitoh, The Weierstrass transform and an isometry in the heat equation, Appl. Anal. 1983, (16):1–6.

[6] S. Saitoh, Approximate real inversion formulas of the Gaussian convolution, Appl. Anal. 2004, (83):727–733.

[7] S. Saitoh, Best approximation, Tikhonov regularization and reproducing kernels, Kodai Math. J. 28 (2005) 359–367.

[8] F. Soltani, Littlewood-Paley g-function in the Dunkl analysis on Rd, J. Inequal. Pure Appl. Math. 2005.

[9] F. Soltani, Inversion formulas in the Dunkl-type heat conduction on Rd, Appl. Anal. 2005, (84):541–553.

[10] F. Soltani, Best approximation formulas for the Dunkl L2-multiplier operators on Rd, Rocky Mountain J. Math. 2012, (42):305–328.

[11] F. Soltani, Multiplier operators and extremal functions related to the dual Dunkl-Sonine operator, Acta Math. Sci. 2013, 33B(2):430–442.

[12] F. Soltani, Operators and Tikhonov regularization on the Fock space, Int. Trans. Spec. Funct. 2014, 25(4):283–294.

[13] F. Soltani and A. Nemri, Analytical and numerical approximation formulas for the Fourier multiplier operators, Complex Anal. Oper. Theory, 2015, 9(1):121–138.

[14] F. Soltani and A. Nemri, Analytical and numerical applications for the Fourier multiplier operators on Rn × (0,∞), Appl. Anal. http://dx.doi.org/10.1080/00036811.2014.937432.

[15] M. Yamada, T. Matsuura and S. Saitoh, Representations of inverse functions by the integral transform with the sign kernel, Frac. Calc. Appl. Anal. 2007, (2):161–168.