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Numerical Applications of Tikhonov Regularization
for the Fourier Multiplier Operators

Fethi Soltani, Adel Almarashi, Idir Mechai

Abstract—Tikhonov regularization and reproducing kernels are the
most popular approaches to solve ill-posed problems in computational
mathematics and applications. And the Fourier multiplier operators
are an essential tool to extend some known linear transforms
in Euclidean Fourier analysis, as: Weierstrass transform, Poisson
integral. Hilbert transform. Riesz transforms. Bochner-Riesz mean
operators, partial Fourier integral. Riesz potential. Bessel potential.
etc. Using the theory of reproducing kernels, we construct a simple
and efficient representations for some class of Fourier multiplier
operators 73, on the Paley-Wiener space Hj. In addition, we give
an error estimate formula for the approximation and obtain some
convergence results as the parameters and the independent variables
approaches zero. Furthermore, using numerical quadrature integration
rules to compute single and multiple integrals, we give numerical
examples and we write explicitly the extremal function and the
corresponding Fourier multiplier operators.

Keywords—Fourier multiplier operators, Gauss-Kronrod method
of integration, Paley-Wiener space, Tikhonov regularization.

I. INTRODUCTION

IKHONOV regularization is the most widely used

method for regularization of ill-posed problems. It has
applications to various operator equations for numerical
analysis and to many inverse problems [2], [6], [9], [10],
[12]. In particular, a simple and efficient representation can
obtained by using the theory of reproducing kernels to
both mathematical and numerical theories for bounded linear
operators in Hilbert spaces [3], [13], [14].

We first consider the space R™ with the Euclidean inner
product (.,.) and norm |y| := /(y,y). We denote by g the
measure on R™ given by du(y) := (27) "/?dy. Furthermore,
we denote the space of measurable functions f on R™ by
LP(R™) for 1 < p < oo, such that

. 1/p
I fllLe@n) : ( A |f(;l/)|1d;t(y)) < o0,
| fll Lo mny := ess sup |f(y)| < oc.
yekkn

Next, we define the Fourier transform for a given function
f e LYR") as

F(f)a) - / i) f(y)du(y), =€ R™,

and the Fourier multiplier operators 7, are defined for f €
L2(R™) by

Tor. 1

I'mf = F " (mF(f)),
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where m is a function in L°°(R"™). These operators have
attracted the interest of several authors because it provides
an essential tool to extend some known linear transforms
in Euclidean Fourier analysis [5], [6], [8], [11], like:
Weierstrass transform, Poisson integral, Hilbert transform,
Riesz transforms, Bochner-Riesz mean operators, partial
Fourier integral, Riesz potential, Bessel potential, etc.

Following the ideas of Matsuura et al. [2], Saitoh [5], [7]
and Yamada et al. [15], and using the theory of reproducing
kernels [1], [4], we give best approximation of the Fourier
multiplier operator 7},, on the Paley-Wiener space H;,. More
precisely, for all 7 > 0, g € L?(R™), the infimum

i 112 m 2
ot {all I, + llg = Touf I 2camy -

is attained at one function [ . called the extremal function,
and given by

ity,z) Xn(2)m(2)F(g)(2)

F; (1 € , du(z).
.o () /H{,. N+ |m(z)]? w(z)
The extremal function F, -~ satisfies the following

properties. y
(@ ”F;,g“Hh < 2\/1—]“!]” L2(R")-
(i) lim, [T Fy = gll 2y =0
(iii) 7]Ii% \Ey o, — flla, = 0.

We also give numerical experiments for some
problems and write explicitly the computed formulas
for the extremal function and the corresponding Fourier

multiplier operators. The results are presented as plots for
different values of / and t.

1 <p < oo, This paper is organized as follows. In Section II, we

define and study the Fourier multiplier operators 7, on the
Paley-Wiener spaces H;,. Furthermore,we give an application
of the theory of reproducing kernels to the Tikhonov
regularization, which gives the best approximation of the
operators 1, on the Paley-Wiener spaces Fj. Section III
is devoted to present some numerical computation results to
validate the theory. Finally, in Section IV, we summarize the
obtained results and describe future work.

II. TIKHONOV REGULARIZATION ON PALEY-WIENER
SPACE
The Fourier transform F satisfies the following properties:
(i) L' — L*>-boundedness: For all f € LY(R"), F(f) €
L*°(R™) and

IF (Lo @ny < 1 fllor@ny-
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(ii) Inversion theorem: Let f € L'(R™), such that F(f) €
L'(R™). Then

ae. ze€R"™

(iii) Plancherel theorem: The Fourier transform F extends
uniquely to an isometric isomorphism of L*(R™) onto itself.
In particular,
IF(HL2eny = 1l L2wn)
Let h > 0 and x;, the function defined by

n
= H,\'(—rl/h.l/h)(zi): z=(21,...
=1

where x(_1/5,1/5) is the characteristic function on the interval

(=1/h,1/h).

We define the Paley-Wiener space H},, as

Hy, = F Y{(xn L*(R™)).

eR"

+2n)

The space Hj, satisfies
H, c LA(R™), F(Hy)c L'nL*R"™).

We see that any element [ € Hj, is represented uniquely
by a function I’ € L*(R") in the form

f=&F
The space Hj, provided with the norm

1112, =

For a given function m in L>(R"), we define the Fourier
multiplier operators T}, for f € L*>(R") as

Ty f == F1(mF(f)),

which are a bounded linear operators from H, into L?(R™),
and we have

”Tmf"LQ('ﬂ?.") < ”'m'"IP“(U?.'")”f“Hh'

As application on multiplier operators, we give the
following examples:
1) Let m be the function defined for ¢ > 0 by

(\h )

| F|| 2 e -

,—té(z)

m(z) == e £(z) =

T () / i) UG F () (2) dp(2).
L‘Bl"
2) For m defined for ¢ > 0 as
n 1
= 7 o TR z = (217"-7271)a
]HI(, [z +1)

m(z)

thus

T @)= [ ¢ “~yH,|¢J|+1 (1) () d(2).
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We denote by (., ), u, forn > 0, the inner product defined
on the space Hj, by

<f7 g)l],H;. = 77(f1 g) H, = (Tm f: an> L2(R"),
(f: f)n,H;l .

and the norm || f||,.m, :

Let 7 > 0 and m € L*(R"). The space (Hp, (., ) H)
has the reproducing kernel
: xn(2)eHE9)
Kp(z,y) = e du(z), 1
() /n n+ |m(z)]? u(z), @

that is
(i) For all ¥y € R", the function = — K}, (z,y) belongs to Hj,.
(ii) The reproducing property: For all f € H), and y € R",

{(f, Kn(.; I(y).

Next, by using the theory of extremal function and
reproducing kernel of Hilbert space [4], [5], [6], [7] we
establish the extremal function associated to the Fourier
multiplier operators 75,.

Theorem 1. Let m € L*(R"). For any g € L*(R") and
Jor any 1 > 0, there exists a unique function F, ,, where the
infimum

?/))7;.11,, =

nf {nll A, + g =T Fl3acem }

Fx

is attained. Moreover, the extremal function I, ,

Fy o (y)=

is given by

<g: T (I(h (w y))) L2(R"),

where K}, is the kernel given by (2.1).
Corollary 1. Let n > 0 and g € L*(R"). The extremal
Junction F, | satisfies

Q) Fyo(y) = / [/

2(11 4)/4
I]g( )l = Wllglll/?(p")

(i) F?, (3) / Gty Xn(2)m(2)F (g)(2)

1] b |m( i’

e~ Hz—y,2)

\h( )m(
n+ m(2)[?

dp (z)] du(z).

dp(z).

Flg)(z)
/]+|m )2
”J”H(? )

v) ”Ir]q”Uh =9

Theorem 2. Let 7 > O For every g € L*(R"), we have

o i(y,2) Xh z |77?(' |‘Z ( )( )
® TmFy g(y) = /p - n+ |m(z)|? d4lz);
xa(2)Im(2)*F(g)(2)

(ii) ]-'(T,,,F;J)(Z) = 2
N+ |m(2)|?
(iii) TmF;g( ) = F;fl"ng(q)
(iv) llm Ty g — 9llL2wny =0
n—
Corollary 2. Let > 0. For every f € Hy, we have
(1) llm VEy 1 s — FllLo@ny = 0.
(11) llm | F, 2 Tf = flla, =0

Remark 1. Let m € L*(R"™) with m +# 0; and let
g € L?(R™). From the dominated convergence theorem we
have

F5.(y) / 9(z) U

s()e~4e=42

Hil7) dp(z) | dp(z).
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As application of the external functions,
following examples.

we give the

n

Example 1. Let 7 > 0, and g (x) = H'\'( 1,1y(z5). If
m(z) := e (), t > 0, then -
*Z(Irﬂj)z:‘
Fra®) /( L1 /b,,l n neu( et IK(2) | du(z),
where

Since m(z) is an even function, then F;; () can be simplified
as

Fro®) = [ (/ .
(=1, 1" T:ﬁ
.

Then

- 2 n/2

Next, taking n — 0 yields

" n T n e‘"’f]sin(zi)cos(yjzj)
T =] ) = dz | . 3
3

=1

17 cos(zjz;—yj24
nel“( )(+Jc Ju‘(y:) J)d/'(z)) dp(z),

2m) "2 (115 J1, cos(ziz: y"z")dzj)\l;m(z).

1}6“‘(2)%-6 te(z)

y

l—In sin(z Z)COS(JZ z;)
J=1 Zj

et | e—t)

du(z).
@)

Similarly, the Fourier multiplier operator 7, F; (y) can be
written as

etz (f(-|,1)" e l(:"ﬂdl‘(f))

Tm E;g( ) /(“h‘ ‘:‘)" ,)C'zu'(:) +1 d‘ll(z),
e ((9)—n/2 I—I 1 e—i:jrjdd:j
- o Uiy Jau(z),
(ot )" 1 1
h h
W ((2r) 2 [T cos(zju;)dw;
/( Ly ( ne2ti(= l)+11 - )du(z).
&R
Thus
n/2 n sin(., )Cos(., )
In‘llng( ( ) /T 13n ne 2t6(z) ' ] d/L(Z)
4)
Setting 7 — 0 implies
n + S
T B, () = & H (/h sin (z;) cos (”yj)dz_,-) . 5)
n 1 -~
Jj=1 ¥ T =7

Example 2. Let n > 0, and g(z) = HX( 1,1)(z5). If

Jj=1
n

m(z) = []
42

we obtain:

F, o) = f(—l.l)" (l(

1
——F—, t > 0, then as in the Example 1,
1(t |25]+1)

l'l; o (t] 2;‘|r1)e_'("_’1)1
T S ) § AN CF7 ES VLA

d(2) ) (o)
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Thus
) 9 n/2 e (£I2j|+l)si“(:j):")_E(yj::’)
Frolw) = (;) s o )
( R 'h) 7=l
(6)
and
n 1
oS 1 ® o (t|z;| +1)sin (z;) cos (y;z;
£ (o) FH(/A,( Jz3 +1)s () s (s ])dzj), N
=1 h
On the other hand we have
. iv:2) (f(~l,l)" iz I)d“(m))d 5
m ’1 g n 2 ou‘ z),
" (35:1) n [T (tlz5]+1)

and therefore

n sin(z;) cos(z;y;)

n/2
] >
TnFy () ( ) / - = du(z).
1.9 S 'IH 1(1|~]|+1) +1 5

ITT. NUMERICAL RESULTS

In this section, we use the Gauss—Kronrod method to
integrate numerically and plot F;  (y) and T, F}  (y) given
in the the Examples 1 and 2, for » — 2 and different values
of ¢t and h. In the Example 1, the integrals (2), (3), (4), (5)

become, respectively:

1 ]_[J -1 1 sin(z; ) cos(y;z;)

1

h h
* _ . e Q
Fq,g(!/) - _'7/ _, netUelFlm2Dfe—Hz 1|H221)dzld‘°2 &)

= J =1
h h

o R : n etlel gin (u)cos(yjfu.)d io
ng(U) ' :H - " w |, (10)

i ] e [Tj—1 2 sin(25) cos(y;2;)
Iml,; g _2/ / ,,,2v(| ERETI RS dzydzy, (11)

1 * sin (u) cos (y;u
TPy, 0) = = ( / Md) L(12)

! e < =1 uw
7=1 h
Similarly, for the example 2. we have

1z, (zslrr)ein(ey) coolus=;)

— ’ e ] , dz1dze, (13)
Fro = =1 /= Ntz [+ 12 (t 2|+ 1) 241 1552
h
2 1

* 1 3 uw sin(u) cos{ y;u

‘O’J(y) = 7‘__21_[ (ﬂl (tju|+1) n!(‘ ) ('IJ )du) . (14)
= h

l];z-_x 5i..(=_i)f<fr-.(_g,j :j)

TnFy o / / AT DD d21d22. (15)
IV. CONCLUSION

We investigated the Tikhonov regularization method, and

we constructed a simple and efficient representations for
some class of Fourier multiplier operators. We gave an error
estimates formulas for the approximation and we obtained
some convergence as the variable n — 07. Finally, we
tested the obtained results numerically by using numerical
quadrature integration rules to compute the single and double
integrals corresponding to the extremal function and the
Fourier multiplier operators. The same results obtained in

1SNI:0000000091950263
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025

025

02-,
0.15-
0.1-

0.05-.

-00S.
o

(a) h = 1/400

(b) h = 1/150

(c) h=1/60

(dy h =1/7

(e) h=1/2

Hh=1

Fig. 1 Extremal function Ff" /(y) given by (9) for £ = 1
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5o
(e)h=1/9 (Hh=1/20

Fig. 2 Extremal function I-"f‘g(y) given by (10) for £t = 1
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® h=1/4

=
4 e 1
5 0

(cyh=1/8 (dyh=1/15

/

(&) h=1/20 ) h =1/100
Fig. 3 Extremal function F(’;‘g(y) given by (10) fort =10 7
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4 ’,-//’
5 0
(a) h = 1/400

-+

s 0o
(e) h=1/2 NHh=1

Fig. 4 Fourier multiplier operators T I (y) given by (11)
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5 0

(by h =1/5

(¢) h=1/8 yh=1/15

(e) h=1/30 () h =1/100

Fig. 5 Fourier multiplier operators Ty I (y) given by (12)
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(e) h=1/25 N h=1/35

Fig. 6 Extremal function F'?  (y) given by (13) for t = 1
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(e) h=1/30 () h=1/100

Fig. 7 Extremal function F§  (y) given by (14) for £ = 1
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(ayh=1

(c) h=1/8

(e) h=1/30

(byh=1/4

() k= 1/100

Fig. 8 Extremal function FJ _(y) given by (14) for t = 107

0.9
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60—

100-,—

e
(by h=1/4

50
(c)h=1/8

5o 5o
(e) h =1/30 () h=1/100

Fig. 9 Extremal function Fj _(y) given by (14) for £ = 10

-
)9
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5 0
() h=1/15

P
(by h =1/4

(dyh=1/35

Fig. 10 Fourier multiplier operators T, I ,(y) given by (15) for ¢ = 1

the case of the Fourier transform can be expanded for
different transformations such as: Hartley transform, Hankel
transform,and Dunkl transform.
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