A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets
Authors: O. Poleshchuk, E.Komarov
Abstract:
This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.
Keywords: Interval type-2 fuzzy sets, fuzzy regression, weighted interval.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092874
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228References:
[1] H. Tanaka, "Fuzzy data analysis by possibilistic linear models”, Fuzzy Sets and Systems, vol. 21, pp. 363-375, 1991.
[2] H. Tanaka, S. Uejima, K. Asai, "Linear regression analysis with fuzzy model”. IEEE. Systems, Trans. Systems Man Cybernet. SMC-2, pp. 903-907, 1982.
[3] H. Tanaka, H. Ishibuchi, "Identification of possibilistic linear models” Fuzzy Sets and Systems, 1991, vol. 41, pp. 145 - 160.
[4] H. Tanaka, H. Ishibuchi, S. Yoshikawa, "Exponential possibility regression analysis,” Fuzzy Sets and Systems, 1995, vol. 69, pp. 305 - 318.
[5] A. Celmins, "Least squares model fitting to fuzzy vector data”, Fuzzy Sets and Systems, 1987, vol. 22, pp. 245-269.
[6] A. Celmins, "Multidimensional least-squares model fitting of fuzzy models”, Math. Modeling, 1987, vol. 9, pp. 669-690.
[7] D.A. Sabic, W. Pedrycr, "Evaluation on fuzzy linear regression models,” Fuzzy Sets and Systems, 1991, vol. 39, pp. 51 - 63.
[8] Y.-H.O. Chang, "Synthesize fuzzy-random data by hybrid fuzzy least-squares regression analysis”, J. National Kaohsiung Inst. Technol., 1997, vol. 28, pp. 1-14.
[9] Y.-H.O. Chang, "Hybrid fuzzy-random analysis for system modeling”, J. National Kaohsiung Inst. Technol., 1998, vol. 29, pp. 1-9.
[10] Y.-H.O. Chang, "Hybrid fuzzy least-squares regression analysis and its reliabity measures”, Fuzzy Sets and Systems, 2001, vol. 119, pp. 225-246.
[11] Y.-H.O. Chang, B.M. Ayyub, "Fuzzy regression methods – a comparative assessment”, Fuzzy Sets and Systems, 2001, vol. 119, pp. 187-203.
[12] R.J. Hathaway, J.C. Bezdek, "Switching regression models and fuzzy clustering”, IEEE Transactions on fuzzy systems, vol. 1, № 3, pp. 195-203, 1993.
[13] I.B. Turksen, "Fuzzy functions with LSE”, Applied Soft Computing, vol. 8, № 3, pp. 1178-1188, 2008.
[14] A. Celikyilmaz, I.B. Turksen, "Fuzzy functions with support vector machines”, Information Sciences, 2007, vol. 177, pp. 5163–5177.
[15] C.C. Yao, P.T. Yu, "Fuzzy regression based on asymmetric support vector machines”, Applied Mathematics and Computation, 2006, 182, pp. 175-193
[16] P.-T. Chang, E.S. Lee, "Fuzzy linear regression with spreads unrestricted in sign”, Comput. Math. Appl., 1994, 28, pp. 61-71.
[17] C.B. Cheng, E.S. Lee, Fuzzy regression with radial basis function network”, Fuzzy Sets and Systems, 2001, vol. 119, pp. 291-301.
[18] C.C. Chuang, "Fuzzy weighted support vector regression with a fuzzy partition”, IEEE Trans. on SMC Part B (37), pp. 630-640, 2007.
[19] H. Ishibuchi, "Fuzzy regression analysis”, J. Fuzzy Theory and Systems, 1992, 4, pp. 137-148.
[20] H. Ishibuchi, M. Nii, "Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks”, Fuzzy Sets and Systems, 2001, vol. 119, pp. 273-290.
[21] O. M. Poleshuk, E. G. Komarov, "Multiple hybrid regression for fuzzy observed data” Proceedings of the 27th International Conference of the North American Fuzzy Information Processing Society, NAFIPS'2008, - New York, New York, May 19-22, 2008.
[22] O.Poleshchuk, E.Komarov, "Hybrid fuzzy least-squares regression model for qualitative characteristics”, Advances in Intelligent and Soft Computing., 2010, vol. 68, pp. 187-196.
[23] O. M. Poleshuk, E. G. Komarov, "A nonlinear hybrid fuzzy least-squares regression model” Proceedings of the 30th International Conference of the North American Fuzzy Information Processing Society, NAFIPS'2011, - El Paso, Texas, March 18-20, 2011.
[24] O.Poleshchuk, E.Komarov"A fuzzy linear regression model for interval type-2 fuzzy sets” Proceedings of the 31th International Conference of the North American Fuzzy Information Processing Society, NAFIPS'2012, - San Francisco, August 6-8, 2012.
[25] F. Liu and J. M. Mendel, "Encoding words into interval Type-2 fuzzy sets using an interval approach”, IEEE Tranns. Fuzzy Systems, vol. 16, № 6, 2008.
[26] O.M. Poleshuk, E.G. Komarov, "New defuzzification method based on weighted intervals”, Proceedings of the 27th International Conference of the North American Fuzzy Information Processing Society, NAFIPS'2008, New York, New York, May 19-22, 2008.
[27] Olga Poleshchuk and Evgeniy Komarov Expert Fuzzy Information Processing. – Springer-Verlag Berlin Heidelberg, 2011. – 237 pp.
[28] T .F. Coleman, Y. Li, "A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables”, SIAM J. Optim, vol. 6, pp. 1040-1058, 1996.