Search results for: radiant cooling panel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 601

Search results for: radiant cooling panel

421 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou

Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan

Abstract:

Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.

Keywords: Outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978
420 A Double PWM Source Inverter Technique with Reduced Leakage Current for Application on Standalone Systems

Authors: Md. Noman Habib Khan, S. Khan, T. S. Gunawan, R. I. Boby

Abstract:

The photovoltaic (PV) panel with no galvanic isolation system is well known technique in the world which is effective and delivers power with enhanced efficiency. The PV generation presented here is for stand-alone system installed in remote areas when as the resulting power gets connected to electronic load installation instead of being tied to the grid. Though very small, even then transformer-less topology is shown to be with leakage in pico-ampere range. By using PWM technique PWM, leakage current in different situations is shown. The results shown in this paper show how the pico-ampere current is reduced to femto-ampere through use of inductors and capacitors of suitable values of inductor and capacitors with the load.

Keywords: Photovoltaic (PV) panel, Duty cycle, Pulse Duration Modulation (PDM), Leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
419 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.

Keywords: Buoyancy force, friction force, friction factor, finite volume method, transient natural convection, thermal hydraulic analysis, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
418 Development of Environment Friendly Mimosa Tannin-Cornstarch Based Wood Adhesive

Authors: Salise Oktay, Nilgün Kızılcan, Başak Bengü

Abstract:

At present, formaldehyde-based adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), melamine-urea formaldehyde (MUF) etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non-renewable resources. Hence, there has been a growing interest in the development of environment friendly, economically competitive, bio-based wood adhesives in order to meet wood-based panel industry requirements. In this study, as formaldehyde free adhesive, tannin and starch-based wood adhesive was synthesized. Citric acid and tartaric acid were used as hardener for the resin system. Solid content, viscosity and gel time analyzes of the prepared adhesive were performed in order to evaluate the adhesive processability. FTIR characterization technique was used to elucidate chemical structures of the cured adhesive samples. In order to evaluate the performance of the prepared bio-based resin formulation, particleboards were produced in laboratory scale and mechanical, physical properties of the boards were investigated. Besides, formaldehyde contents of the boards were determined by using perforator method. The obtained results revealed that the developed bio-based wood adhesive formulation can be a good potential candidate to use in wood-based panel industry with some developments.

Keywords: Wood adhesive, cornstarch, mimosa tannin, particleboard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
417 The Effect of Type of Nanoparticles on the Quenching Process

Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Harun Cifci

Abstract:

In this study, the experiments were carried out to determine the best coolant for the quenching process among waterbased silica, alumina, titania and copper oxide nanofluids (0.1 vol%). A sphere made up off brass material was used in the experiments. When the spherical test specimen was heated at high temperatures, it was suddenly immersed into the nanofluids. All experiments were carried out at saturated conditions and under atmospheric pressure. After the experiments, the cooling curves were obtained by using the temperature-time data of the specimen. The experimental results showed that the cooling performance of test specimen depended on the type of nanofluids. The silica nanoparticles enhanced the performance of boiling heat transfer and it is the best coolant for the quenching among other nanoparticles.

Keywords: Heat transfer, nanofluid, pool boiling, quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2569
416 Development of the Measurement Apparatus for the Effective Thermal Conductivity of Core Material

Authors: Jongmin Kim, Tae-Ho Song

Abstract:

A measurement apparatus is designed and fabricated to measure the effective thermal conductivity (keff) of a VIP (vacuum insulation panel) core specimen under various vacuum states and external loads. The apparatus consists of part for measuring keff, and parts for controlling external load and vacuum condition. Uncertainty of the apparatus is validated by measuring the standard reference material and comparing with commercial devices with VIP samples. Assessed uncertainty is maximum 2.5 % in case of the standard reference material, 10 % in case of VIP samples. Using the apparatus, keff of glass paper under various vacuum levels is examined.

Keywords: Effective thermal conductivity, guarded hot plate method, vacuum insulation panel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
415 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

Authors: Tapano Kumar Hotta, S P Venkateshan

Abstract:

Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.

Keywords: Discrete heat source, mixed convection, natural convection, vertical channel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
414 Factors Influencing B2c eCommerce Diffusion

Authors: R. Mangiaracina, A. Perego, F. Campari

Abstract:

Despite the fact that B2c eCommerce has become important in numerous economies, its adoption varies from country to country. This paper aims to identify the factors affecting (enabling or inhibiting) B2c eCommerce and to determine their quantitative impact on the diffusion of online sales across countries. A dynamic panel model analyzing the relationship between 13 factors (Macroeconomic, Demographic, Socio-Cultural, Infrastructural and Offer related) stemming from a complete literature analysis and the B2c eCommerce value in 45 countries over 9 years has been developed. Having a positive correlation coefficient, GDP, mobile penetration, Internet user penetration and credit card penetration resulted as enabling drivers of the B2c eCommerce value across countries, whereas, having a negative correlation coefficient,equal distribution of income and the development of traditional retailing network act as inhibiting factors.

Keywords: B2c eCommerce diffusion, influencing factors, dynamic panel model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3502
413 Firm Ownership and Performance: Evidence for Croatian Listed Firms

Authors: M. Pervan, I. Pervan, M. Todoric

Abstract:

Using data of listed Croatian firms from the Zagreb Stock Exchange we analyze the relationship between firm ownership (ownership concentration and type) and performance (ROA). Empirical research was conducted for the period 2003-2010, yielding with the total of 1,430 observations. Empirical findings based on dynamic panel analysis indicate that ownership concentration variable - CR4 is negatively related with performance, i.e. listed firms with dispersed ownership perform better than firms with concentrated ownership. Also, the research indicated that foreign controlled listed firms perform better than domestically controlled firms. Majority state owned firms perform worse than privately held firms but dummy variable for privately controlled firms was not statistically significant in the estimated panel model.

Keywords: Croatia, firm, ownership, performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
412 Two-dimensional Heat Conduction of Direct Cooling in the Rotor of an Electrical Generator(Numerical Analysis)

Authors: A. Kargar, A. Kianifar, H. Mohammadiun

Abstract:

Two-dimensional heat conduction within a composed solid material with a constant internal heat generation has been investigated numerically in a sector of the rotor a generator. The heat transfer between two adjacent materials is assumed to be purely conduction. Boundary conditions are assumed to be forced convection on the fluid side and adiabatic on symmetry lines. The control volume method is applied for the diffusion energy equation. Physical coordinates are transformed to the general curvilinear coordinates. Then by using a line-by-line method, the temperature distribution in a sector of the rotor has been determined. Finally, the results are normalized and the effect of cooling fluid on the maximum temperature of insulation is investigated.

Keywords: general curvilinear coordinates , jacobian, controlvolume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
411 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: Audit fee, heteroscedasticity, Lagrange multiplier test, periodicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
410 Experimental Investigation of Heat Transfer on Vertical Two-Phased Closed Thermosyphon

Authors: M. Hadi Kusuma, Nandy Putra, Anhar Riza Antariksawan, Ficky Augusta Imawan

Abstract:

Heat pipe is considered to be applied as a passive system to remove residual heat that generated from reactor core when incident occur or from spent fuel storage pool. The objectives are to characterized the heat transfer phenomena, performance of heat pipe, and as a model for large heat pipe will be applied as passive cooling system on nuclear spent fuel pool storage. In this experimental wickless heat pipe or two-phase closed thermosyphon (TPCT) is used. Variation of heat flux are 611.24 Watt/m2 - 3291.29 Watt/m2. Variation of filling ratio are 45 - 70%. Variation of initial pressure are -62 to -74 cm Hg. Demineralized water is used as working fluid in the TPCT. The results showed that increasing of heat load leads to an increase of evaporation of the working fluid. The optimum filling ratio obtained for 60% of TPCT evaporator volume, and initial pressure variation gave different TPCT wall temperature characteristic. TPCT showed best performance with 60% filling ratio and can be consider to be applied as passive residual heat removal system or passive cooling system on spent fuel storage pool.

Keywords: Two-phase closed thermo syphon, heat pipe, passive cooling, spent fuel storage pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
409 Development of Thermal Model by Performance Verification of Heat Pipe Subsystem for Electronic Cooling under Space Environment

Authors: MK Lee, JS Hong, SM Sin, HU Oh

Abstract:

Heat pipes are used to control the thermal problem for electronic cooling. It is especially difficult to dissipate heat to a heat sink in an environment in space compared to earth. For solving this problem, in this study, the Poiseuille (Po) number, which is the main measure of the performance of a heat pipe, is studied by CFD; then, the heat pipe performance is verified with experimental results. A heat pipe is then fabricated for a spatial environment, and an in-house code is developed. Further, a heat pipe subsystem, which consists of a heat pipe, MLI (Multi Layer Insulator), SSM (Second Surface Mirror), and radiator, is tested and correlated with the TMM (Thermal Mathematical Model) through a commercial code. The correlation results satisfy the 3K requirement, and the generated thermal model is verified for application to a spatial environment.

Keywords: CFD, Heat pipe, Radiator, Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
408 Effect of Nanofluids on the Saturated Pool Film Boiling

Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Kemal Comakli

Abstract:

In this study, the effect of nanofluids on the pool film boiling was experimentally investigated at saturated condition under atmospheric pressure. For this purpose, four different water-based nanofluids (Al2O3, SiO2, TiO2 and CuO) with 0.1% particle volume fraction were prepared. To investigate the boiling heat transfer, a cylindrical rod with high temperature was used. The rod heated up to high temperatures was immersed into nanofluids. The center temperature of rod during the cooling process was recorded by using a K-type thermocouple. The quenching curves showed that the pool boiling heat transfer was strongly dependent on the nanoparticle materials. During the repetitive quenching tests, the cooling time decreased and thus, the film boiling vanished. Consequently, the primary reason of this was the change of the surface characteristics due to the nanoparticles deposition on the rod-s surface.

Keywords: Heat transfer, nanofluid, nanoparticles, pool film boiling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
407 Transcritical CO2 Heat Pump Simulation Model and Validation for Simultaneous Cooling and Heating

Authors: Jahar Sarkar

Abstract:

In the present study, a steady-state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump system for simultaneous water cooling and heating. Both the evaporator (including both two-phase and superheated zone) and gas cooler models consider the highly variable heat transfer characteristics of CO2 and pressure drop. The numerical simulation model of transcritical CO2 heat pump has been validated by test data obtained from experiments on the heat pump prototype. Comparison between the test results and the model prediction for system COP variation with compressor discharge pressure shows a modest agreement with a maximum deviation of 15% and the trends are fairly similar. Comparison for other operating parameters also shows fairly similar deviation between the test results and the model prediction. Finally, the simulation results are presented to study the effects of operating parameters such as, temperature of heat exchanger fluid at the inlet, discharge pressure, compressor speed on system performance of CO2 heat pump, suitable in a dairy plant where simultaneous cooling at 4oC and heating at 73oC are required. Results show that good heat transfer properties of CO2 for both two-phase and supercritical region and efficient compression process contribute a lot for high system COPs.

Keywords: CO2 heat pump, dairy system, experiment, simulation model, validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
406 An Experimental Study on Autoignition of Wood

Authors: Tri Poespowati

Abstract:

Experiments were conducted to characterize fire properties of wood exposed to the certain external heat flux and under variety of wood moisture content. Six kinds of Indonesian wood: keruing, sono, cemara, kamper, pinus, and mahoni were exposed to radiant heat from a conical heater, result in appearance of a stable flame on the wood surface caused by spontaneous ignition. A thermocouple K-type was used to measure the wood surface temperature. Temperature histories were recorded throughout each experiment at 1 s intervals using a TC-08. Data of first ignition time and temperature, end ignition time and temperature, and charring rate have been successfully collected. It was found that the ignition temperature and charring rate depend on moisture content of wood.

Keywords: Fire properties, moisture content, wood, charring rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
405 Design of the Large Dimension Cold Shield Cooled by G-M Cryocooler

Authors: Gong Jie, Yu Qianxu, Liu Min, Shan Weiwei

Abstract:

The design of methods of the 20 K large dimension cold shield used for infrared radiation demarcating in space environment simulation test were introduced in this paper. The cold shield were cooled by five G-M cryocoolers , and the dimension of the cold shield is the largest in our country.Cold shield installation and distribution and compensator for contraction on cooling were introduced detailedly. The temperature distribution and cool-down time of cold shield surface were also calculated and analysed in this paper. The design of cold shield resolves the difficulty of compensator for contraction on cooling successfully. Test results show that the actual technical performance indicators of cold shield met and exceeded the design requirements.

Keywords: cold shield, G-M cryocooler,infrared radiometer demarcating, satellite, space environment simulation equipments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
404 Monitoring of Dielectric Losses and Use of Ferrofluids for Bushing Cooling

Authors: S. D. Nedelcut, V. Proca, D. M. Purcaru

Abstract:

At present, the tendency to implement the conditionbased maintenance (CBM), which allows the optimization of the expenses for equipment monitoring, is more and more evident; also, the transformer substations with remote monitoring are increasingly used. This paper reviews all the advantages of the on-line monitoring and presents an equipment for on-line monitoring of bushings, which is the own contribution of specialists who are the authors of this paper. The paper presents a study of the temperature field, using the finite element method. For carrying out this study, the 3D modelling of the above mentioned bushing was performed. The analysis study is done taking into account the extreme thermal stresses, focusing at the level of the first cooling wing section of the ceramic insulator. This fact enables to justify the tanδ variation in time, depending on the transformer loading and the environmental conditions. With a view to reducing the variation of dielectric losses in bushing insulation, the use of ferrofuids instead of mineral oils is proposed.

Keywords: Monitoring, dielectric losses, ferrofluids, bushing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
403 Study on Using the Ground as A Heat Sink for A 12,000-Btu/h Modified Air Conditioner

Authors: W. Permchart, S. Tanatvanit

Abstract:

This paper presents the results of the experimental tests of the cooling performance of a 12,000-Btu/h modified air conditioner (referred to as M-AC) that use the ground as a heat sink of a condenser. In the tests, cooling capacity of M-AC with an optimal length of a condensing coil as well as life expectancy of copper coil buried underground were investigated. The lengths of copper coil fabricated and used as condenser coil of M-AC were set at 67, 50, 40 and 30 m whereas that of a 12,000-Btu/h conventional split-type air conditioner (referred to as C-AC) was about 22 m. The results showed that the ground can absorb heat rejected from a condenser of M-AC. The coefficient of performance (COP) of C-AC was about 2.5 whereas those of M-AC were found to be higher. It was found that the values of COP of M-AC with condensing coils of 67, 50 and 40 m long were about 6.9, 5.5 and 3.3, respectively, while that of 30-m-long one was found to be about 2.1. The electrical consumptions of M-AC were found lower than that of C-AC in the range of 11.5 – 15.5%. Additionally, life expectancy of underground condensing coil of M-AC was found to be over 7 years.

Keywords: Air conditioner, condenser, copper coil, ground.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
402 Double-Diffusive Natural Convection with Marangoni and Cooling Effects

Authors: Norazam Arbin, Ishak Hashim

Abstract:

Double-diffusive natural convection in an open top square cavity and heated from the side is studied numerically. Constant temperatures and concentration are imposed along the right and left walls while the heat balance at the surface is assumed to obey Newton-s law of cooling. The finite difference method is used to solve the dimensionless governing equations. The numerical results are reported for the effect of Marangoni number, Biot number and Prandtl number on the contours of streamlines, temperature and concentration. The predicted results for the average Nusselt number and Sherwood number are presented for various parametric conditions. The parameters involved are as follows; the thermal Marangoni number, 0 ≤ MaT ≤1000 , the solutal Marangoni number, 0 1000 c ≤ Ma ≤ , the Biot number, 0 ≤ Bi ≤ 6 , Grashof number, 5 Gr = 10 and aspect ratio 1. The study focused on both flows; thermal dominated, N = 0.8 , and compositional dominated, N = 1.3 .

Keywords: Double-diffusive, Marangoni effects, heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
401 Nanocrystalline Na0.1V2O5.nH2O Xerogel Thin Film for Gas Sensing

Authors: M. S. Al-Assiri, M. M. El-Desoky, Ahmed A. Ibrahim, M. Abaker, A. A. Bahgat

Abstract:

Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol gel synthesis was used as gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130oC to 150oC show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.

Keywords: Sol gel, Thermoelectric power, XRD, TEM, Gas sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
400 Operating Live E! Digital Meteorological Equipments Using Solar Photovoltaics

Authors: Eiko Takaoka, Ryohei Takahashi, Takashi Toyoda

Abstract:

We installed solar panels and digital meteorological equipments whose electrical power is supplied using PV on July 13, 2011. Then, the relationship between the electric power generation and the irradiation, air temperature, and wind velocity was investigated on a roof at a university. The electrical power generation, irradiation, air temperature, and wind velocity were monitored over two years. By analyzing the measured meteorological data and electric power generation data using PTC, we calculated the size of the solar panel that is most suitable for this system. We also calculated the wasted power generation using PTC with the measured meteorological data obtained in this study. In conclusion, to reduce the "wasted power generation", a smaller-size solar panel is required for stable operation.

Keywords: Digital meteorological equipments, PV, photovoltaic, irradiation, PTC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
399 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software

Authors: Elham Zamiri

Abstract:

In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 C to 70 C. This investigation is developable for any geometry and material used in the nuclear reactor.

Keywords: Nuclear fuel fission, numberal simulation, fuel rod, reactor, fluent software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
398 Effects of Human Capital and Openness on Economic Growth of Developed and Developing Countries: A Panel Data Analysis

Authors: Fatma Didin Sonmez, Pinar Sener

Abstract:

Technology transfer by international trade and foreign direct investment is the most important positive outcome of open economy. It is widely accepted that new technology and knowledge have an important role in enhancing economic growth. Human capital is the other important factor assisting economic growth. In this study, the role of human capital in the growth process is examined in a view of new endogenous growth theory emphasizing on the technology transfer resulting from international trade. Using the panel data of 10 developed and 10 developing countries, impact of human capital and openness on the rate of economic growth of different countries is analysed. Evidence suggests the view that human capital and openness contribute to the economic growth in both developing and developed countries, but with different rates.

Keywords: economic growth, human capital, openness, technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
397 Experimental Study of Performance of a Counter Flow Ranque-Hilsch Vortex Tube with Inner Threaded Body

Authors: Gürol Önal, Kevser Dincer

Abstract:

In this experimental study, performance of a counter flow Ranque-Hilsch vortex tube (RHVT) with threads cut on its inner surface was investigated experimentally (pitch is 1 and 2 mm). The inner diameter of the vortex tube used was D=9 mm and the ratio of the tube’s length to diameter was L/D=12. The experimental system was a thermodynamic open system. Flow was controlled by a valve on the hot outlet side, where the valve was changed from a nearly closed position to its nearly open position. Fraction of cold flow (ξ) = 0.1-0.9, was determined under 300 and 350 kPa pressurized air. All experimental data were compared with each other, the maximum heating performance of the RHVT system was found to be 38.2 oC and the maximum cooling performance of the RHVT in this study was found to be -30.9 oC at pitch 1 mm.

Keywords: Ranque-Hilsch vortex tube, heating, cooling, temperature separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2836
396 Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints

Authors: J. Dutta, Narendranath S.

Abstract:

In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.

Keywords: Thermal history, Gas tungsten arc welding, Butt joint, High carbon steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2729
395 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi

Abstract:

A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.

Keywords: Chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
394 Design and Implementation of DC-DC Converter with Inc-Cond Algorithm

Authors: Mustafa Engin Basoğlu, Bekir Çakır

Abstract:

The most important component affecting the efficiency of photovoltaic power systems are solar panels. In other words, efficiency of these systems are significantly affected due to the being low efficiency of solar panel. Thus, solar panels should be operated under maximum power point conditions through a power converter. In this study, design of boost converter has been carried out with maximum power point tracking (MPPT) algorithm which is incremental conductance (Inc-Cond). By using this algorithm, importance of power converter in MPPT hardware design, impacts of MPPT operation have been shown. It is worth noting that initial operation point is the main criteria for determining the MPPT performance. In addition, it is shown that if value of load resistance is lower than critical value, failure operation is realized. For these analyzes, direct duty control is used for simplifying the control.

Keywords: Boost converter, Incremental Conductance (Inc- Cond), MPPT, Solar panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3600
393 Computational Study of Improving the Efficiency of Photovoltaic Panels in the UAE

Authors: Ben Richard Hughes, Ng Ping Sze Cherisa, Osman Beg

Abstract:

Various solar energy technologies exist and they have different application techniques in the generation of electrical power. The widespread use of photovoltaic (PV) modules in such technologies has been limited by relatively high costs and low efficiencies. The efficiency of PV panels decreases as the operating temperatures increase. This is due to the affect of solar intensity and ambient temperature. In this work, Computational Fluid Dynamics (CFD) was used to model the heat transfer from a standard PV panel and thus determine the rate of dissipation of heat. To accurately model the specific climatic conditions of the United Arab Emirates (UAE), a case study of a new build green building in Dubai was used. A finned heat pipe arrangement is proposed and analyzed to determine the improved heat dissipation and thus improved performance efficiency of the PV panel. A prototype of the arrangement is built for experimental testing to validate the CFD modeling and proof of concept.

Keywords: Computational Fluid Dynamics, Improving Efficiency, Photovoltaic (PV) Panels, Heat-pipe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3450
392 Computational Evaluation of a C-A Heat Pump

Authors: Young-Jin Baik, Minsung Kim, Young-Soo Lee, Ki-Chang Chang, Seong-Ryong Park

Abstract:

The compression-absorption heat pump (C-A HP), one of the promising heat recovery equipments that make process hot water using low temperature heat of wastewater, was evaluated by computer simulation. A simulation program was developed based on the continuity and the first and second laws of thermodynamics. Both the absorber and desorber were modeled using UA-LMTD method. In order to prevent an unfeasible temperature profile and to reduce calculation errors from the curved temperature profile of a mixture, heat loads were divided into lots of segments. A single-stage compressor was considered. A compressor cooling load was also taken into account. An isentropic efficiency was computed from the map data. Simulation conditions were given based on the system consisting of ordinarily designed components. The simulation results show that most of the total entropy generation occurs during the compression and cooling process, thus suggesting the possibility that system performance can be enhanced if a rectifier is introduced.

Keywords: Waste heat recovery, Heat Pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682