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Abstract—This research attempts to investigate the effects of 
heteroscedasticity and periodicity in a Panel Data Regression Model 
(PDRM) by extending previous works on balanced panel data 
estimation within the context of fitting PDRM for Banks audit fee. 
The estimation of such model was achieved through the derivation of 
Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-
serial correlation, a conditional LM test for zero serial correlation 
given heteroscedasticity of varying degrees as well as conditional LM 
test for homoscedasticity given first order positive serial correlation 
via a two-way error component model. Monte Carlo simulations were 
carried out for 81 different variations, of which its design assumed a 
uniform distribution under a linear heteroscedasticity function. Each 
of the variation was iterated 1000 times and the assessment of the 
three estimators considered are based on Variance, Absolute bias 
(ABIAS), Mean square error (MSE) and the Root Mean Square 
(RMSE) of parameters estimates. Eighteen different models at 
different specified conditions were fitted, and the best-fitted model is 
that of within estimator when heteroscedasticity is severe at either 
zero or positive serial correlation value. LM test results showed that 
the tests have good size and power as all the three tests are significant 
at 5% for the specified linear form of heteroscedasticity function 
which established the facts that Banks operations are severely 
heteroscedastic in nature with little or no periodicity effects.  
 

Keywords—Audit fee, heteroscedasticity, Lagrange multiplier 
test, periodicity. 

I. INTRODUCTION 

DRM often suffers from phenomena of heteroscedasticity 
and periodicity when fitted. This is as a result of the 

heteroscedastic nature of its individual-specific error 𝜇  and 
the serially correlated nature of its time (periods) effect 𝜆 . 
The pioneering work of [1] has given rise to further researches 
on the estimation of heteroscedasticity effects in panel data. 
Most of the existing literatures were concerned with 
regression models that have to do with one-way error 
components model, 𝑢  𝜇 𝑣 , i =1,...,T, where the index i 
refers to the T time series observations. For instance, both [1] 
and [6] were concerned with the estimation of a model 
allowing for heteroscedasticity on the individual-specific error 
term, i.e. assuming that 𝜇  ~ (0, 𝜎 ) while vit ~ IID(0, σ2

v). In 
contrast, [2], [3], [5], [8] adopted a symmetrically opposite 
specification allowing for heteroscedasticity on the remainder 
error term, i.e. assuming that μi ~ IID (0, σ2

μ) while vit ~ (0, 
𝜎 ). Other authors who have developed estimation techniques 
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for heteroscedasticity in relations to the aforementioned are 
[4], [7], [9]-[16]. The authors who have worked on that of 
serial correlations are among [17]-[20]. Reference [17] 
extended the error component model to take into account first-
order serial correlation in the remainder disturbances of 
random effects model, while [18] carried out the same work 
for fixed effects model. References [18] and [19] estimated 
serial correlations by testing AR (1) against MA (1) 
disturbances in an error component model. Notably among the 
works that assume the existence of both problems are [21]-
[23]. However, most of these works were concerned with 
regression models that have to do with one-way error 
components model. Recently [24] extended [11] and [21] to 
the two-way error components where heteroscedasticity and 
spatial correlation are considered in their determination of 
Joint and Conditional LM tests. 

In this paper, focus shall be centered on the estimation of 
phenomena of heteroscedasticity and periodicity via a PDRM 
of Banks audit fees by extending the works of [16], [21], [24].  

II. MATERIAL AND METHODS 

Monte Carlo simulations were carried out using Uniform 
distributions for a replicates of 1000 under 81 different 
variations of space and time via a linear functional form of 
heteroscedasticity. Three sizes of cross-sectional units (N=20, 
40 and 60), three time periods (T = 10, 40, and 100), a 
homoscedastic situation and two degrees of heteroscedasticity 
(moderate and severe) and in line with [22], 𝜌 is allowed to 
vary at three different levels of positive serial correlation (i.e 
0, 0.5, 0.9) representing zero, weak and strong positive levels 
respectively. 

A. Model Specification 

The two models specified for Fixed and Random effect 
models are given respectively as 

 

AFit = 𝛼  + 𝛼  𝐷   𝛼  𝐷  ⋯ 𝛼 𝐷  𝜆  + 𝜆  𝐷   𝜆  𝐷  

⋯ 𝜆 𝐷  + β2 PBTit + β3TAit + β4TLit + β5SHFit + 

𝛾  𝐷  PBT  𝛾  𝐷  TA  + 𝛾  𝐷  TL  𝛾  𝐷  SHF  + 

… 𝛾  𝐷  PBT  𝛾  𝐷  TA  + 

𝛾  𝐷  TL  𝛾  𝐷  SHF  + 

𝜓  𝐷  PBT  𝜓  𝐷  TA  + 𝜓  𝐷  TL  𝜓  𝑆𝐻𝐹  + 

… 𝜓  𝐷  PBT  𝜓  𝐷  TA  + 

𝜓  𝐷  TL  𝜓  𝐷  SHF  + εit          (1) 
 

AFit = β1 + β2 PBTit + β3TAit + β4TLit + β5SHFit  + 𝜔     (2) 
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where Audit fees (AF), Profit before Tax (PBT), Total Assets 
(TA), Total Liability (TL) and Shareholders Fund (SHF) were 
originated from simulated panel data. β1, β2, β3, β4 and β5 are 
estimable parameters and 𝜔  is a composite error term. 
𝛼  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑤ℎ𝑖𝑙𝑒 
𝛼 , 𝛼 … , 𝛼  are the differential intercepts coefficients. 𝜆  is 
the intercept of the 𝑇  year while 𝜆 , 𝜆 … , 𝜆  are the 
remaining years intercepts. 𝐷 , … , 𝐷  are the dummy 
variables of (N-1) individuals, 𝐷  , … , 𝐷   are dummy 
variables for (T-1) years, 
 𝛾  , 𝛾  , … , 𝛾   𝑎𝑛𝑑 𝜓  , 𝜓  , … , 𝜓   are the differential 
slope coefficients for individual and periodic effects 
respectively. 

In the course of this study, it was demonstrated that the 
conditional variance of 𝐴𝐹  increases as each of 
𝑃𝐵𝑇 , 𝑇𝐴 , 𝑇𝐿  and 𝑆𝐻𝐹   increases.  

Model (1) and (2) were estimated using  
 

Pooled OLS estimator: 𝛽   𝑋 𝑋  𝑋′ 𝑦      (3) 
 

Within estimator: 𝛽  𝑋′ 𝑀 𝑋  𝑋′𝑀  y  (4) 
 

 GLS estimator: β  X Ω X 𝑋 Ω 𝑌∗ (5) 
 

Assessments of the above estimators were based on 
Variance, ABIAS, MSE and the RMSE of parameters 
estimates. After evaluating the above criteria for each of the 
estimator, their performances were ranked and the best method 
identified. 

B. Model Testing 

Here, we shall employ a two-way error component model as 
earlier emphasized, to test for the violation of 
homoscedasticity and zero serial correlation assumptions in 
our researched model. 

Considering a two-way error component model stated as: 
 

𝑦 𝑥 𝛽  𝑢  , ;  𝑖 1,2, … , 𝑁  𝑡 1,2, … , 𝑇         (6) 
 

Within the context of two-way error component, the 
regression disturbances term 𝑢  can be described by  

 
𝑢  𝜇  𝜆  𝑣                            (7) 

                                                                             
with 𝜇  representing individual-specific effect, 𝜆  representing 
time-specific effect and 𝑣  the idiosyncratic remainder 
disturbance term, which is usually assumed to be well-
behaved and independent from both the regressors 𝑥  and 𝜇 . 
The two-way error component model can be written in matrix 
form as  
 

𝑦 𝑋𝛽 𝑢     (8) 
 

The disturbance term 𝑢 in (11) can be written in vector form 
as  

 
𝑢 𝐼  ⨂ 𝜄 𝜐 𝐼 ⨂ 𝜄 𝜇 𝐼 ⨂ 𝜄 𝜆 𝑉       (9) 

where 𝐼  is an identity matrix of dimension 𝑁𝑇, 𝐼   is an 
identity matrix of dimension 𝑁, 𝐼  is an identity matrix of 
dimension 𝑇, 𝜄  is a vector of ones of dimension 𝑁𝑇, 𝜄  is a 
vector of ones of dimension 𝑇, 𝜄  is a vector of ones of 
dimension 𝑁, 𝜇 𝜇 , … , 𝜇 , 𝜆 𝜆 , … , 𝜆 , 𝑉 is the 
AR(1) covariance matrix of dimension 𝑇, ⨂ denotes the 
kronecker product and  
 

𝑉𝑎𝑟 𝜇 𝜎 ℎ 𝑓 𝛼   , 𝑖 1 , … , 𝑁          (10) 
 

According to [25], the function ℎ ∙  is an arbitrary strictly 
positive twice continuously differentiable function, 𝛼 𝑖𝑠 𝑎 𝑃 𝑥 1 
vector of unrestricted parameters and 𝑓  is a 𝑃 𝑥 1 vector of 
strictly exogenous regressors which determine the 
heteroscedasticity of the individual specific effects and the 
first element of 𝑓  is one, and without loss of generality, 
ℎ 𝛼  𝜎 . 

Following [21], the variance-covariance matrix of 𝑢 can be 
written as  

 
𝐸 𝑢𝑢 Σ  𝜎 𝐼 ⊗ 𝜄  𝜄 𝐼 ⨂ 𝜄 𝜄 𝜎 𝜎 𝐼  ⊗ 𝑉   
 𝐼 ⊗ 𝜄 𝑑𝑖𝑎𝑔 ℎ 𝑓 𝛼 𝐼 ⊗ 𝜄 𝐼 ⨂ 𝜄 𝜄 𝜎 𝜎 𝐼  ⊗ 𝑉 

 𝑑𝑖𝑎𝑔 ℎ 𝑓 𝛼 ⊗ 𝐽 𝐼 ⨂ 𝜄 𝜄 𝜎 𝜎 𝐼  ⊗ 𝑉   (11) 
 
where 𝐽  is a matrix of ones of dimension 
𝑇, 𝑑𝑖𝑎𝑔 ℎ 𝑓 𝛼  is a diagonal matrix of dimension 𝑁𝑥𝑁 and 
𝑉 can be expressed as  
 

𝑉 𝐸 𝑉𝑉 𝜎 𝑉   (12) 

 
where  𝑉  is a symmetric matrix of order 𝜌  

1. Joint Lagrange Multiplier (JLM) Test 

Here, we derived the joint LM test for homoscedasticity and 
no serial correlation of the first order. As specified in (14), the 
variance-covariance matrix of the disturbances in (11) is given 
as 

 

 Σ  𝑑𝑖𝑎𝑔 ℎ 𝑓 𝛼 ⊗ 𝐽 𝐼 ⨂ 𝜄 𝜄 𝜎 𝜎 𝐼  ⊗ 𝑉  (13) 
 

under the null hypothesis, 𝐻  : 𝜎  𝜎 , ∀  𝑎𝑛𝑑 𝜎  
0 𝑏𝑢𝑡 𝜎  0, 𝜌 0 (such that both individual and time 

effects are missing), the variance covariance matrix of 𝑢 
reduces to  
 

Σ 𝜎 𝐼 ⊗ 𝐽 𝐼 ⨂ 𝜄 𝜄 𝜎 𝜎 𝐼 ⊗ 𝐼      (14) 
  
And the spectral decomposition according to [26], becomes  
 

Σ 𝐸 ⊗ 𝜎 𝐼 𝜎 𝜄 𝜄 𝐽 ⊗ 𝐼 𝜎 𝑇𝜎 𝜎 𝜄 𝜄  (15) 
  
In line with (11), the inverse of Σ becomes 
 

Σ 𝐸 ⨂𝐼 𝜎 𝐼 𝜎 𝜄 𝜄 𝐽 ̅ ⊗ 𝜎 𝐼 𝜎 𝜄 𝜄   (16) 
 
where 𝜎 𝜎  𝑇𝜎 . 
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Under normality of the disturbances, the log-likelihood 
function, 𝐿 of a LM follows that of a multivariate normal 
distribution. Thus, 

 

𝐿 𝛽, 𝜃 ln 2𝜋 𝑙𝑛|Σ| 𝑢 𝑢          (17) 
 

where 𝜃 𝜎 , 𝜎 , 𝜎 , 𝜌, 𝛼  and 𝑢 𝑦 𝑥𝛽. 
In order to obtain the JLM statistic, we need to obtain the 

score statistic 𝐷 𝜃  and the Information matrix 𝐼 𝜃

𝐸  evaluated at the restricted maximum likelihood 

(ML) estimator 𝜃. 𝐼 𝜃  is a block-diagonal between 𝛽 𝑎𝑛𝑑 𝜃 
and since 𝐻 : 𝜃 𝜎 , 𝜎 , 𝜎 , 𝜌, 𝛼  involves only 𝜃, the part 
of the information due to 𝛽 is ignored [25]. Following [21], 
we obtain 𝐷 𝜃  and 𝐼 𝜃  as 

 

𝑡𝑟 Σ 𝑢 Σ Σ 𝑢           (18) 

 

𝐸 𝑡𝑟 Σ Σ                 (19) 

 

Thus, evaluation of partial derivatives  at restricted MLE 

yields 
 

𝐷 𝜌 𝑡𝑟 Σ 𝑢 Σ Σ 𝑢   

𝑡𝑟 𝜎 𝐼 ⊗
̅ ̅

𝑢 𝜎 𝐼 ⊗

̅ ̅
𝑢  

𝑢 𝐼 ⊗

̅ ̅
𝑢  

 
Since 𝑡𝑟 𝑍 0, 𝑡𝑟 𝐽 ̅ 𝑍 2 𝑇 1 /𝑇 𝑡𝑟 𝐸 𝑍 , 𝑡𝑟 𝐽 ̅

1 𝑎𝑛𝑑 𝑡𝑟 𝐸 𝑇 1 [21] 
 

𝑢 𝐼 ⊗
̅ ̅

𝑢  

𝑁 𝑇 1 𝑢 𝐼 ⊗
̅ ̅

𝑢  

𝐷 𝜌  

𝐷 𝛼 𝑡𝑟 Σ 𝑢 Σ Σ 𝑢   

𝑡𝑟 𝑑𝑖𝑎𝑔 𝑓 ⊗ 𝐽  𝑢 𝑑𝑖𝑎𝑔 𝑓 ⊗ 𝐽 𝑢 

∑ 𝑓 ∑ 𝑓  𝑢 𝐽 𝑢   

∑ 𝑓 ∑ 𝑓  ∑ 𝑢   

∑ 𝑓
∑

1 , 𝑘 1,2, … , 𝑝 𝐹′𝑔 (20) 

 
Equation (20) is the solution obtained after maximization of 

the first order condition, where 𝑢 𝑦 𝑥𝛽  is the 
restricted maximum likelihood residuals under 𝐻 , 𝛼  is the 
solution of 𝐷 𝛼 0, 𝜎  is the solution of 𝜎 0, 𝐹

𝑓 , … , 𝑓 𝑎𝑛𝑑 𝑔 𝑔 , … , 𝑔 , 𝑤ℎ𝑒𝑟𝑒 𝑔
∑

1 . All 

the components of the score test statistic ∙  evaluated at 

maximization of the first order condition are all equal to zero 

except 
 

 and 
 

 [24]. Thus, the partial derivatives under 𝐻  

are rewritten in vector form as  
 

𝐷 𝜃

⎝

⎜⎜
⎛

0
0
0

𝐷 𝜌

𝐹′𝑔 ⎠

⎟⎟
⎞

                              (21) 

 
Also, we obtain the information matrix under the null 
hypothesis as a symmetric matrix of the form 

 

𝐼 𝜃

⎝

⎜
⎜
⎛

𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜌 𝜎 𝛼

𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜌 𝜎 𝛼

𝜎 𝜎
𝜎 𝜌
𝜎 𝛼

𝜎 𝜎

𝜌𝜎

𝛼𝜎

𝜎
𝜌𝜎
𝜎 𝛼

𝜎 𝜌
𝜌
𝜌𝛼

𝜎 𝛼
𝜌𝛼
𝛼 ⎠

⎟
⎟
⎞

           (22) 

                                                                   

⎝

⎜
⎜
⎜
⎛

0 0    0 𝑁 𝑇 1 𝜎 𝜄 𝐹 

0 0    0                   0                              0        
0

𝑁 𝑇 1 𝜎

𝜄 𝐹

0
0
0

 0
0
0

0

𝐹

0

𝐹

𝐹′𝐹 ⎠

⎟
⎟
⎟
⎞

 (23) 
 
Therefore, 𝐿𝑀 statistic under 𝐻  is obtained by  
 

𝐿𝑀 , 𝐷 𝜃 𝐼 𝜃  𝐷 𝜃    (24) 

 

𝐷 𝜌
𝑇ℎ 𝛼

2𝜎
𝐹′𝑔

⎝

⎜
⎛

𝑇𝜎
2 𝑇 1 𝑁 𝑇 𝜎 𝜎

𝜎 𝜎
𝑁 𝑇 𝜎 𝜎 𝐹′

𝜎 𝜎
𝑁 𝑇 𝜎 𝜎 𝐹′

2𝑁𝜎
𝑇 ℎ′ 𝛼 𝑁 𝑇 ⎠

⎟
⎞

𝐷 𝜌
𝑇ℎ 𝛼

2𝜎
𝐹′𝑔

 

 
   (25) 

 
Under the null hypothesis, the 𝐿𝑀 statistic of (29) is 

asymptotically distributed as 𝜒   𝑎𝑠 𝑁, 𝑇 → ∞ 
2. Conditional Lagrange Multiplier (CLM 1) Test 

Here, we derive a conditional LM test for 𝐻  : 𝜎   𝜎 , 

∀  𝑎𝑛𝑑 𝜎  0 𝑏𝑢𝑡 𝜎  0, 𝜌 0 
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Under 𝐻  , the variance covariance matrix of the 
disturbances as given by (14) becomes  

 

Σ  𝑑𝑖𝑎𝑔 ℎ 𝑓 𝛼 ⊗ 𝐽 𝜎 𝐼 ⊗ 𝐼  𝜎 𝐼          (26) 
 

The spectral decomposition and inverse of Σ respectively 
becomes 

 

Σ  𝑑𝑖𝑎𝑔 𝑇ℎ 𝑓 𝛼 𝜎 ⊗ 𝐽̅ 𝜎 𝐼 ⊗ 𝐼  𝜎 𝐼    (27) 
 

Σ  𝑑𝑖𝑎𝑔 ⊗ 𝐽̅ 𝐼 ⊗ 𝐸  𝐼  

 
where      

 Ω   𝑇ℎ 𝑓 𝛼 𝜎              (28) 
 

Therefore,  
 

𝐷 𝜌 𝑡𝑟 Σ 𝑢′Σ Σ 𝑢   

𝑡𝑟 𝑑𝑖𝑎𝑔 ⊗ 𝐽̅ 𝑍 𝐼 ⊗ 𝐸 𝑍  𝐼 ⊗ 𝑍

𝑢′ 𝑑𝑖𝑎𝑔 ⊗ 𝐽̅ 𝑍 𝐼 ⊗ 𝐸 𝑍  𝐼 𝑍 𝑢   

∑ ∑ 𝑡𝑟 ∑ ∑

𝑢′ 𝑑𝑖𝑎𝑔 ⊗ 𝐽̅ 𝑍 𝐼 ⊗ 𝐸 𝑍  𝐼 𝑍 𝑢   

𝑠𝑖𝑛𝑐𝑒 𝑡𝑟 𝑍 0 𝑎𝑛𝑑 𝑡𝑟 𝐽 ̅ 𝑍 𝑡𝑟 𝐸 𝑍   

∑ ∑ 0  𝑢′ 𝑑𝑖𝑎𝑔 ⊗

𝐽̅ 𝑍 𝐼 ⊗ 𝐸 𝑍  𝐼 𝑍 𝑢   

 
since there is no serial correlation of which its variance has 
been expressed as 𝜎  
 

∑ ∑  𝑢′ 𝑑𝑖𝑎𝑔 ⊗ 𝐽̅ 𝑍

𝐼 ⊗ 𝐸 𝑍  𝐼 𝑍 𝑢          (29) 

 
Equation (29) is the solution obtained after maximization of 

the first order condition, where 𝑢 𝑦 𝑥𝛽  is the 
generalized least square residuals under 𝐻 , Ω 𝑇ℎ 𝑓 𝛼
𝜎 , 𝑤ℎ𝑒𝑟𝑒 𝛼 is the ML estimator of 𝛼 𝑢𝑛𝑑𝑒𝑟 𝐻 , 𝑎𝑛𝑑 ℎ′ 𝑓 𝛼  
is the evaluated value of 𝜕ℎ 𝑓 𝛼 𝜕𝑓 𝛼⁄ . All the components 

of the score test statistic ∙  evaluated at maximization of 

the first order condition are all equal to zero except
 

 . Thus, 

the partial derivatives under 𝐻  are expressed in vector form 
as 

 

𝐷 �̂�

⎝

⎜
⎛

0
0
0
0

𝐷 𝜌 ⎠

⎟
⎞

              (30) 

 
Also, we obtain information matrix under the null hypothesis 

as a symmetric matrix of the form 
 

𝐼 �̂�

⎝

⎜
⎜
⎛

𝛽′𝛽 𝛽𝜎 𝛽𝜎 𝛽𝜎 𝛽𝜌

𝛽𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜌

𝛽𝜎

𝛽𝜎
𝛽𝜌

𝜎 𝜎

𝜎 𝜎
𝜎 𝜌

𝜎

𝜎 𝜎

𝜎 𝜌

𝜎 𝜎

𝜎
𝜎 𝜌

𝜎 𝜌

𝜎 𝜌
𝜌 ⎠

⎟
⎟
⎞

 (31) 

 

⎝

⎜
⎜
⎜
⎛

𝐼 �̂� 0     0                0                             0

0 𝜎                0                0            𝑁 ∞

0
0
0

0
0

𝑁 ∞
          

𝜎

0
0

   0
         𝜎

   0

         

0
0

𝑁 ∞ ⎠

⎟
⎟
⎟
⎞

           

 (32) 
 

Thus, a conditional 𝐿𝑀 statistic under the specified 𝐻  is 
given as 

 

 𝐿𝑀 | 𝐷 𝜌 ′ 𝐼 �̂� | 𝐷 𝜌    (33) 
 

Setting 𝐻 𝑑𝑖𝑎𝑔
√

𝐼 , √
,

√
,

√
,

√
, LM statistic 

also becomes   
 

𝐿𝑀 | 𝐷 𝜌 𝐻 𝐼 �̂� 𝐻 |      (34) 

 

 𝐻 𝐼 �̂� 𝐻   
, →
⎯⎯⎯ 𝐼 �̂�  

 
Thus, the 𝐿𝑀 statistic becomes 

 

𝐿𝑀 | 𝐷 𝜌 ′ 𝐼 �̂� | 𝐷 𝜌    (35) 
                                                                                        

where 𝐼 �̂� | 𝑁 ∞ 𝑍 𝐼 𝑍   

Under 𝐻 , 𝐿𝑀 statistic is asymptotically distributed as 
𝜒   𝑎𝑠 𝑁, 𝑇 → ∞. 

3. Conditional Lagrange Multiplier (CLM 2) Test 

Here, we derive a conditional LM test for 𝐻  : 𝜎  𝜎 , 

∀  𝑎𝑛𝑑 𝜎  0 𝑏𝑢𝑡 𝜎  0, 𝜌 0. 
Under 𝐻  , the variance covariance matrix of the disturbance 

term becomes  
 

Σ  𝜎 𝐼 ⊗ 𝐼  𝜎 𝐼 𝐼 ′ 𝜎 𝐼 ⊗ 𝑉       (36) 
 

where  𝑉 𝑉  and 𝑉  is the AR(1)correlation matrix. 

According to [21], the inverse of Σ under 𝐻  becomes 
 

Σ 𝐼 ⨂𝑉 𝐼 ⊗ 𝑉 𝐽 𝑉    (37) 

 
Therefore,  

 

𝐷 𝛼 𝑡𝑟 Σ 𝑢′Σ Σ 𝑢   
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= 𝑡𝑟 𝑑𝑖𝑎𝑔 𝑓 ⨂𝑉 𝐽  𝑑𝑖𝑎𝑔 𝑓 ⊗

𝑉 𝐽 𝑉 𝐽 𝑢′ 𝑑𝑖𝑎𝑔 𝑓 ⨂𝑉 𝐽 𝑉

2 𝑑𝑖𝑎𝑔 𝑓 ⊗ 𝑉 𝐽 𝑉 𝐽 𝑉 𝑑𝑖𝑎𝑔 𝑓 ⊗

𝑉 𝐽 𝑉 𝐽 𝑉 𝐽 𝑉 𝑢   

𝜑 1 𝜌 ∑ 𝑓 ∑ 𝑓

𝑢 ∑ ⨂ 𝜑 1 𝜌 𝑉 2 𝑉

𝑉 𝑢   

1 ∑ 𝑓   

𝑢 𝑉 1 2 𝑢 ∑ 𝑓   

∑ 𝑓 𝑢 𝑉 1 2

1  ∑ 𝑓 𝑢 𝑉 1

2 𝑢 1   

∑ 𝑓 𝑢 𝐴𝑢 1 ,    𝑘

1, … , 𝑝  (38) 
 

Equation (38) is the solution obtained after maximization of 

the first order condition, where 𝐴 𝑉 1 2

, 𝑢 𝑦 𝑥𝛽  is the maximum likelihood 

residuals under 𝐻 , 𝛽, 𝜎 , 𝜎  and 𝛼  is the maximum 

likelihood estimates of 𝛽, 𝜎 , 𝜎 , 𝜎  𝑎𝑛𝑑 𝛼  respectively. All 

components of the above score test statistic ∙  evaluated at 

�̂� are equal to zero except . Also, 𝜎  is the value of ℎ 𝛼  

and ℎ 𝛼  is the evaluated value of 𝜕ℎ 𝑓í 𝛼 /𝜕𝑓í  when 
𝛼 𝛼 ⋯ 𝛼 0. In addition, 𝑡𝑟 𝑉 𝐽 𝜑 1 𝜌  
and 𝑡𝑟 𝑉 𝐽 𝑉 𝐽 𝜑 1 𝜌 . Thus, the partial derivatives 
under 𝐻  are expressed in vector form as 

 

𝐷 �̂�

⎝

⎜
⎛

0
0
0
0

𝐷 𝛼 ⎠

⎟
⎞

⎝

⎜⎜
⎛

0
0
0
0

𝐹′𝑔⎠

⎟⎟
⎞

         (39) 

 

where 𝐷 𝛼 𝛼 , 𝐷 𝛼 , … , 𝐷 𝛼 , 𝐹 𝑓 , … , 𝑓 𝑎𝑛𝑑 𝑔

𝑔 , … , 𝑔  where 𝑔 𝑢 𝐴𝑢 1 . Also, we 

obtain information matrix under the null hypothesis as a 
symmetric matrix of the form. 

 

𝐼 �̂�

⎝

⎜
⎜
⎜
⎜
⎛

𝐼 �̂� 0          0                                     0                                                0

0 𝜎           0                                  0                                            0 

0
0
0

0
0
0

     

𝜎

0

𝑁 ∞

    0
         𝜎

   0

       

𝑁 ∞

       0

𝑁 ∞ ⎠

⎟
⎟
⎟
⎟
⎞

             (40) 

 
Thus, a conditional 𝐿𝑀 statistic under the specified 𝐻  is 
given as 

 
𝐿𝑀 | 𝐷 𝛼 ′ 𝐼 𝐼 �̂� | 𝐷 𝛼              (41) 

 

where 𝐼 �̂� | 𝑁 ∞ 𝐹 𝐼

𝐹 . Under 𝐻 , 𝐿𝑀 statistic is asymptotically distributed 

as 𝜒   𝑎𝑠 𝑁, 𝑇 → ∞ (details of the above mathematical 
expressions are available in the appendix upon request from 
the authors). 

III. RESULTS AND DISCUSSION 

The results for the smallest iterated space and time 
combinations of N=20 and T=10 are hereby presented. Small 
values of N and T were chosen to demonstrate that the 
researched model and size of LM tests also work well even for 
small samples and once the research opinion being 
investigated worked at that sample level, it would definitely 
work well asymptotically. This is in line with the opinion 
expressed by [24]. 

Scatter Plot of Audit Fees for Replicates of 1000 When 
N=20 and T=10 

 

Fig. 1 Homoscedastic and zero serial correlation plot of audit fees 
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Fig. 2 Moderate Heteroscedastic and zero serial correlation plot of 
audit fees 

 

 

Fig. 3 Severe heteroscedastic and zero serial correlation plot of audit 
fees 

 

 

Fig. 4 Homoscedastic and positive serial correlation plot of audit fees 

 

Fig. 5 Moderate heteroscedastic and positive serial correlation plot of 
audit fees 

 

 

Fig. 6 Severe Heteroscedastic and positive serial correlation plot of 
audit fees 

 
Figs. 1-6 show the pattern of movement for the individual 

audit fees of all the banks and it can be observed that the plots 
are more dispersed when error is heteroscedastic than when it 
is homoscedastic or serially correlated. 

The estimated models from POLS, Within and GLS 
estimators based on the researched conditions presented in the 
above figures are given as follows:  

 
𝐴𝐹 210,511.8 0.001402𝑃𝐵𝑇 0.0000045𝑇𝐴

0.000014𝑇𝐿 0.00044𝑆𝐻𝐹                       (42a) 
 

𝐴𝐹 3.6745 0.00000002𝑃𝐵𝑇 0.0000000008𝑇𝐴
0.0000000002𝑇𝐿 0.00000008𝑆𝐻𝐹                 (42b) 

 
𝐴𝐹 1.16e 32 7.69e 41𝑃𝐵𝑇 2.49e 42 𝑇𝐴

7.68e 43𝑇𝐿 2.42e 41𝑆𝐻𝐹       (42c) 
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𝐴𝐹 210,511.88 0.001402𝑃𝐵𝑇 0.0000454𝑇𝐴
0.000014𝑇𝐿 0.0004423𝑆𝐻𝐹                     (43a) 

 
𝐴𝐹 36,745.24 0.0002479𝑃𝐵𝑇 0.0000079𝑇𝐴

0.0000024𝑇𝐿 0.00007.72𝑆𝐻𝐹       (43b) 
 

𝐴𝐹 1.15e 32 7.69e 41𝑃𝐵𝑇 2.49e 42𝑇𝐴
7.68e 43𝑇𝐿 2.42e 41𝑆𝐻𝐹                 (43c) 

 
𝐴𝐹 210,511.8 0.001402𝑃𝐵𝑇 0.0000454𝑇𝐴

0.000014𝑇𝐿 0.0004423𝑆𝐻𝐹                    (44a) 
 

𝐴𝐹 1,116,400 0.007437𝑃𝐵𝑇
0.000240𝑇𝐴 0.000074𝑇𝐿 0.002346𝑆𝐻𝐹  (44b) 

 
𝐴𝐹 1.16e 32 7.69e 41𝑃𝐵𝑇 2.49e 42𝑇𝐴

7.68e 43𝑇𝐿 2.42e 41𝑆𝐻𝐹           (44c) 
 

𝐴𝐹 210,511.80 0.001402𝑃𝐵𝑇 0.000045𝑇𝐴
0.000014𝑇𝐿 0.0004423𝑆𝐻𝐹                 (45a) 

 
𝐴𝐹

3.674,524 0.00000002𝑃𝐵𝑇 0.0000000008𝑇𝐴
0.0000000002𝑇𝐿 0.000000007𝑆𝐻𝐹  (45b) 

 
𝐴𝐹 1.16e 32 7.69e 41𝑃𝐵𝑇 2.49e 42𝑇𝐴

7.68e 43𝑇𝐿 2.42e 41𝑆𝐻𝐹               (45c) 
 

𝐴𝐹 210,511.80 0.001402𝑃𝐵𝑇 0.0000454𝑇𝐴
0.000014𝑇𝐿 0.000442𝑆𝐻𝐹                 (46a) 

 
𝐴𝐹 36,745.24 0.000245𝑃𝐵𝑇 0.000008𝑇𝐴

0.000002𝑇𝐿 0.000077𝑆𝐻𝐹                     (46b) 
 

𝐴𝐹 1.16e 32 7.69e 41𝑃𝐵𝑇 2.49e 42𝑇𝐴
7.68e 43𝑇𝐿 2.43e 41𝑆𝐻𝐹               (46c) 

 
𝐴𝐹𝑃𝑂𝐿𝑆 210,511.80 0.00140239𝑃𝐵𝑇 0.00004541𝑇𝐴

0.00001400𝑇𝐿 0.00044234𝑆𝐻𝐹   (47a) 
 

𝐴𝐹 1,116,400 0.0074372𝑃𝐵𝑇 0.0002408𝑇𝐴

0.0000743𝑇𝐿 0.00234585𝑆𝐻𝐹      (47b) 
 

𝐴𝐹 1.15e 32 7.69e 41𝑃𝐵𝑇 2.49e 42𝑇𝐴
7.68e 43𝑇𝐿 2.43e 41𝑆𝐻𝐹          (47c) 

 
Based on the rank results estimated using values of ABIAS 

presented in Table I, GLS technique ranked highest with a 
rank sum of 243 compared to that of Within and OLS with a 
rank sum of 146 and 97, respectively. This implied that GLS 
technique is expected to have given the best estimate for the 
specified PDRM and this is in line with the works of [23] 
where variance was used to rank the results of similar PDRMs. 
However, the theoretical concept of our researched model 
does not support the empirical structure of the kind of models 
fitted through GLS, hence the adoption of a within model 
which will guarantee a positive value for the banks audit fee in 
line with prior opinion. This is also in line with [27] that 
within transformation implements the LSDV model better 
because the regression on de-meaned data yields the same 
results as estimating the model from the original data and a set 
of (N-1) indicator variables for all but one of the panel units. 
Thus, (44b) and (47b) are the ideal models that best fitted the 
specified audit fee model with the later explained the variation 
in audit fees better at 71.92%. This model further exposed the 
fact that out of the two-way error components considered in 
this research, the individual specific error term affects PDRM 
of audit fees more than the time specific error term. This 
individual specific error term which has been established to be 
heteroscedastic in nature is seen to be severe across banks as 
regards their operations with little or no periodicity effects.  

Table II presents significance values for the empirical size 
of the Joint LM test, Conditional LM test for 
heteroscedasticity and zero serial correlation as well as 
Conditional LM test for homoscedasticity and serial 
correlation. This was achieved at 5% level of significance 
when N = 20, 40, and 60 at T = 10. Adapting [21], both the bi-
dimensional remainder error and time specific error terms 
𝜎 , 𝜎  take values (2, 2), (2, 6), (6, 2) and (6, 6) in each 

experiment. These correspond to cases where the percentages 
of the total variance due to both errors are 25% and 75% 
accordingly. On the other hand, 𝛼 is assigned values 0, 1 and 2 
with 𝛼 0 denoting homoscedastic individual specific error, 
while 𝛼 1 and 2 denote moderate and severe heteroscedastic 
errors respectively. These results show that the sizes of all the 
tests are significant at 5% for the specified linear 
heteroscedasticity function. These results conformed with that 
of [24] where similar tests have been used to examined 
heteroscedasticity and spatial correlation in a two-way random 
effect model. 

 
TABLE I 

RANKS OF THE PDRM TECHNIQUES USING ABIAS CRITERION FOR HOMOSCEDASTIC, VARYING DEGREE OF HETEROSCEDASTICITY AND SERIAL CORRELATION 

LEVELS FOR THE VARIOUS SAMPLE SIZES CONSIDERED 

Space Time Serial Correlation Level Homoscedasticity/Heteroscedasticity Degree POLS WITHIN GLS 

20 10 

0 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 2 1 3 

Severe Heteroscedastic 1 2 3 

0.5 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.9 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 
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Space Time Serial Correlation Level Homoscedasticity/Heteroscedasticity Degree POLS WITHIN GLS 

40 

0 

Homoscedastic 2 1 3 

Moderate Heteroscedastic 2 1 3 

Severe Heteroscedastic 1 2 3 

0.5 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 2 1 3 

Severe Heteroscedastic 1 2 3 

0.9 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 2 1 3 

Severe Heteroscedastic 1 2 3 

20 100 

0 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 2 1 3 

Severe Heteroscedastic 2 1 3 

0.5 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 2 1 3 

Severe Heteroscedastic 2 1 3 

0.9 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 2 1 3 

Severe Heteroscedastic 1 2 3 

40 

10 

0 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.5 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.9 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

40 

0 

Homoscedastic 2 1 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.5 

Homoscedastic 2 1 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.9 

Homoscedastic 2 1 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

40 100 

0 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.5 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.9 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

60 

10 

0 

Homoscedastic 2 1 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.5 

Homoscedastic 2 1 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.9 

Homoscedastic 2 1 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

40 

0 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.5 
Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 
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Space Time Serial Correlation Level Homoscedasticity/Heteroscedasticity Degree POLS WITHIN GLS 

Severe Heteroscedastic 1 2 3 

0.9 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

60 100 

0 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.5 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

0.9 

Homoscedastic 1 2 3 

Moderate Heteroscedastic 1 2 3 

Severe Heteroscedastic 1 2 3 

Sum of the Ranks 97 146 243 

 
TABLE II 

ESTIMATED SIZE OF JOINT LM AND CONDITIONAL LM TEST IN LINEAR 

HETEROSCEDASTICITY WHEN T=10 

𝜎  𝜎  𝜶 𝝆 N=20 N=40 N= 60 
Joint LM Test for Homoscedasticity and 

Zero Serial Correlation 
2 2 0 0 0.00258 0.00257 0.00255 

2 6 0 0 0.00260 0.00256 0.00274 

6 2 0 0 0.00276 0.00274 0.00271 

6 6 0 0 0.00279 0.00282 0.00286 
Conditional LM Test for Heteroscedasticity 

and Zero Serial Correlation 

2 

2 1 0 0.00461 0.00445 0.00440 

2 2 0 0.00433 0.00432 0.00430 

6 1 0 0.00402 0.00401 0.00400 

 6 2 0 0.00399 0.00389 0.00380 

6 

2 1 0 0.00406 0.00404 0.00401 

2 2 0 0.00398 0.00396 0.00393 

6 1 0 0.00452 0.00471 0.00490 

6 2 0 0.00499 0.00489 0.00480 
Conditional LM Test for Homoscedasticity 

and Serial Correlation 
2 2 0 0.5 0.0441 0.0432 0.0447 

 2 0 0.9 0.0442 0.0437 0.0446 

 6 0 0.5 0.0443 0.0449 0.0450 

 6 0 0.9 0.0448 0.0443 0.0441 

6 2 0 0.5 0.0342 0.0357 0.0359 

 2 0 0.9 0.0351 0.0353 0.0360 

 6 0 0.5 0.0362 0.0337 0.0346 

 6 0 0.9 0.0448 0.0343 0.0341 

IV. CONCLUSION 

Having used necessary statistical methods, in line with the 
aim of this research, there is no doubt that the main purpose of 
this thesis has been fully realized. Therefore, based on the 
results obtained by the empirical analysis of the simulated 
data, the following conclusions are arrived at: 
 That among the models presented, (44b) and (47b) are the 

only recommended models that satisfy the purpose for 
this research, going by the concept of auditors’ 
remuneration which cannot assumed a negative value. 
These equations are the within models fitted for simulated 
panel data when heteroscedasticity is severe with and 
without the presence of positive serial correlation. 

 Thus, taking advantage of “Big data” under the condition 
of full estimation of heteroscedasticity and periodicity 
effects, (47b) would be preferred over and above that of 
(44b) and shall become the only ideal model capable of 
scientifically estimated a non-subjective audit fees for the 
banks external auditor. This model actually exposed the 
fact that the heterogeneity situation in banking operations 
is severe with little or no periodicity effect. 

 That OLS completely breaks down and can only give rise 
to unreliable inference in the presence of severe 
heteroscedasticity. It only performs better for small 
samples and as sample size increases, OLS derailed even 
in the absence of heteroscedasticity. 

 That GLS technique ranked highest compared to others. 
However, the theoretical concept of our researched model 
does not support the kind of model fitted through GLS, 
hence the adoption of a within model which guarantees a 
positive value for the specified audit fees model. 

 That Fixed effect model (FEM) fits the proposed audit 
fees model better than Random effect model (REM). 

 That Monte Carlo scheme exposed the fact that out of the 
two-way error components considered, the individual 
specific error term affects PDRM of audit fees more than 
the time specific error term. 

 That Monte Carlo results show that both the Joint and the 
two conditional LM tests have good size and power under 
the adopted linear functional form of heteroscedasticity. 
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