Open Science Index, Mathematical and Computational Sciences Vol:13, No:6, 2019 publications.waset.org/10010519.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Vol:13, No:6, 2019

Monte Carlo Estimation of Heteroscedasticity and
Periodicity Effects in a Panel Data Regression Model

Nureni O. Adeboye, Dawud A. Agunbiade

Abstract—This research attempts to investigate the effects of
heteroscedasticity and periodicity in a Panel Data Regression Model
(PDRM) by extending previous works on balanced panel data
estimation within the context of fitting PDRM for Banks audit fee.
The estimation of such model was achieved through the derivation of
Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-
serial correlation, a conditional LM test for zero serial correlation
given heteroscedasticity of varying degrees as well as conditional LM
test for homoscedasticity given first order positive serial correlation
via a two-way error component model. Monte Carlo simulations were
carried out for 81 different variations, of which its design assumed a
uniform distribution under a linear heteroscedasticity function. Each
of the variation was iterated 1000 times and the assessment of the
three estimators considered are based on Variance, Absolute bias
(ABIAS), Mean square error (MSE) and the Root Mean Square
(RMSE) of parameters estimates. Eighteen different models at
different specified conditions were fitted, and the best-fitted model is
that of within estimator when heteroscedasticity is severe at either
zero or positive serial correlation value. LM test results showed that
the tests have good size and power as all the three tests are significant
at 5% for the specified linear form of heteroscedasticity function
which established the facts that Banks operations are severely
heteroscedastic in nature with little or no periodicity effects.

Keywords—Audit fee, heteroscedasticity, Lagrange multiplier
test, periodicity.

I.INTRODUCTION

DRM often suffers from phenomena of heteroscedasticity

and periodicity when fitted. This is as a result of the
heteroscedastic nature of its individual-specific error u; and
the serially correlated nature of its time (periods) effect A.
The pioneering work of [1] has given rise to further researches
on the estimation of heteroscedasticity effects in panel data.
Most of the existing literatures were concerned with
regression models that have to do with one-way error
components model, u;; = p; + vy, i =1,...,T, where the index i
refers to the T time series observations. For instance, both [1]
and [6] were concerned with the estimation of a model
allowing for heteroscedasticity on the individual-specific error
term, i.e. assuming that y; ~ (0, aji) while vi; ~ 11D(0, 6%,). In
contrast, [2], [3], [5], [8] adopted a symmetrically opposite
specification allowing for heteroscedasticity on the remainder
error term, i.e. assuming that p; ~ 11D (0, cszu) while vi; ~ (0,
o). Other authors who have developed estimation techniques
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for heteroscedasticity in relations to the aforementioned are
[41, [7], [9]-[16]. The authors who have worked on that of
serial correlations are among [17]-[20]. Reference [17]
extended the error component model to take into account first-
order serial correlation in the remainder disturbances of
random effects model, while [18] carried out the same work
for fixed effects model. References [18] and [19] estimated
serial correlations by testing AR (1) against MA (1)
disturbances in an error component model. Notably among the
works that assume the existence of both problems are [21]-
[23]. However, most of these works were concerned with
regression models that have to do with one-way error
components model. Recently [24] extended [11] and [21] to
the two-way error components where heteroscedasticity and
spatial correlation are considered in their determination of
Joint and Conditional LM tests.

In this paper, focus shall be centered on the estimation of
phenomena of heteroscedasticity and periodicity via a PDRM
of Banks audit fees by extending the works of [16], [21], [24].

II. MATERIAL AND METHODS

Monte Carlo simulations were catried out using Uniform
distributions for a replicates of 1000 under 81 different
variations of space and time via a linear functional form of
heteroscedasticity. Three sizes of cross-sectional units (N=20,
40 and 60), three time periods (T = 10, 40, and 100), a
homoscedastic situation and two degrees of heteroscedasticity
(moderate and severe) and in line with [22], p is allowed to
vary at three different levels of positive serial correlation (i.e
0, 0.5, 0.9) representing zero, weak and strong positive levels
respectively.

A. Model Specification

The two models specified for Fixed and Random effect
models are given respectively as

AFy=ay +ay Dy, + @Dy + -+ ayDyi+ Ag+ A, D, + 2,D, +
«o+ Ar_1Dr_q + B2 PBT+ B3 TA; + B4TL;, + BsSHF;, +

¥, (D2; PBTip) + v, (D2; TAj) + ¥4 (Da; TLy) + v, (Dy; SHF,) +
o+ Van-1)-3 Dni PBTit) + Vyy—1)—2 (Oni TAjr) +

Yain-1)-1 (Dp; TLy) + Yan-1) (Dy; SHF;) +

Y, (D1 PBTy) + ¥, (D; TAy) + 15 (D1 TLip) + 3, (SHF) +

ot Yyipo1y—z D11 PBTi) Yy roy—y (Dr—1 TAj) +

11)4.(7'_1)_1 (DT—l TLit) + 1!’4(7_1) (DT—l SHFit) + & (1)

AF; = By + B2 PBT+ BsTA; + B4 TLj + BsSHF; + w;e  (2)
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where Audit fees (AF), Profit before Tax (PBT), Total Assets
(TA), Total Liability (TL) and Shareholders Fund (SHF) were
originated from simulated panel data. B, B, B3, B4 and Bs are
estimable parameters and w;; is a composite error term.
a, represents the intercept of the first individual, while
a,, s ..., ay are the differential intercepts coefficients. 4, is
the intercept of the T®" year while A4, ...,Aq_; are the
remaining years intercepts. D, ..,Dq¢ are the dummy
variables of (N-1) individuals, Dy, ..,Dy_; are dummy
variables for (T-1) years,
Y1, V2o Va—1) AnA Y1, Y5, ..., Pacr—_qy are the differential
slope coefficients for individual and periodic effects
respectively.

In the course of this study, it was demonstrated that the

conditional variance of AF;; increases as each of
PBT;;, TA;:, TL;; and SHF;; increases.
Model (1) and (2) were estimated using
Pooled OLS estimator: Bpooled = XXXy (3
Within estimator: § = [X' MpX]~* [X'M,y] 4)
GLS estimator: Prg = (X'Q71X)"1X'Q1Y}; (5)

Assessments of the above estimators were based on
Variance, ABIAS, MSE and the RMSE of parameters
estimates. After evaluating the above criteria for each of the
estimator, their performances were ranked and the best method
identified.

B. Model Testing

Here, we shall employ a two-way error component model as
earlier emphasized, to test for the violation of
homoscedasticity and zero serial correlation assumptions in
our researched model.

Considering a two-way error component model stated as:
1,2,.,.Nt=12,.,T (6)

Within the context of two-way error component, the
regression disturbances term u;; can be described by

Yie = XieB + Wi, 1=

e = Wi+ A+ vy (7
with u; representing individual-specific effect, A, representing
time-specific effect and v;; the idiosyncratic remainder
disturbance term, which is usually assumed to be well-
behaved and independent from both the regressors x;; and y;.
The two-way error component model can be written in matrix
form as
y=XB+u (®)
The disturbance term u in (11) can be written in vector form
as

u=(Iyr @ yp)v + IN® 1)+ ;@ t)A+V  (9)
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where Iypis an identity matrix of dimension NT, Iy is an
identity matrix of dimension N, I;is an identity matrix of
dimension T, tyg is a vector of ones of dimension NT, ¢ is a
vector of ones of dimension T, ty is a vector of ones of
dimension N, p' = (Ug, ... ,un), X' = Ay, . , A7),V is the
AR(1) covariance matrix of dimension T, ® denotes the
kronecker product and
Var(u) = o = h(f{ (@) ,i=1,.., N (10)

According to [25], the function h(*) is an arbitrary strictly
positive twice continuously differentiable function, a isa P x 1
vector of unrestricted parameters and f; is a P x 1 vector of
strictly  exogenous  regressors which determine the
heteroscedasticity of the individual specific effects and the
first element of f; is one, and without loss of generality,
h(ay) = a7

Following [21], the variance-covariance matrix of u can be
written as

Eu) =2 = 02(y Q ity ty) + (7 ® tyiy) o2 + 0ilyr QV
= (Iy ® ip)diag[h(f{ )]y ® 1) + (I ® lNl;v)U/lz +0ilyy @V
= diag[h(fi )] @ Jr + (Ur® wyipy)ai + oiIyy @V (11)

where Jp is a matrix of ones of dimension
T,diag[h(f; @)] is a diagonal matrix of dimension NxN and
V can be expressed as

V=EWV') = a2 (I_LPZ) v, (12)

where V; is a symmetric matrix of order p7~"

1. Joint Lagrange Multiplier (JLM) Test

Here, we derived the joint LM test for homoscedasticity and
no serial correlation of the first order. As specified in (14), the
variance-covariance matrix of the disturbances in (11) is given
as

2 = diag[h(ff )] @ Jr + (I;® tyty)af + ailyy @V (13)

under the null hypothesis, Hy: ¢ = o7, V;andaj, =

0 but ofit # 0,p = 0 (such that both individual and time
effects are missing), the variance covariance matrix of u

reduces to
= Ui(lzv ®Jr) + (Ur® lNL;v)UAZ +o;(Iy®Ir) (14
And the spectral decomposition according to [26], becomes
2= Er @ (6 ly + ofwty) +Jr ® [In(07 + Toi) + ofuwiy] (15)
In line with (11), the inverse of X becomes

171 T i -t
¥ 1= ET®IN(JEIN + afLNLN) +/r ® (6121,\, + GfLNLN) (16)

where of = 07 + Tof.
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Under normality of the disturbances, the log-likelihood
function, L of a LM follows that of a multivariate normal
distribution. Thus,

1

L(B,6) = =~In(2m) -~ InlZ| —su* 'u (17)

where 8’ = (07,07,07,p,a’) andu =y — xp.
In order to obtain the JLM statistic, we need to obtain the

score statistic D(0) = Z—; and the Information matrix 1(8) =

—E [a 29 9,] evaluated at the restricted maximum likelihood

(ML) estimator 8. 1(6) is a block-diagonal between § and 6
and since Hy: 8’ = (0,072,037, p, ') involves only 6, the part
of the information due to f§ is ignored [25]. Following [21],
we obtain D(6) and 1(0) as
[, ry—1 (92 -1
+3lwe (55)2 )

5= =3t = ()
=8 [rgag] =307 [+ (35) 2 33

Thus, evaluation of partial derivatives Z—; at restricted MLE

(18)

19)

yields

2= o) =~ Sor o ()] 2o ()3

=—Etr[0'5 [1NT®<%+]TZ+EZZ ETZ ]]+ uo'v [INT

_ Thi(ay) hi(a,)
= — TSN fa + 5 Bl fae (Bl )
Th'
= @I fu BB 1) k=12, = T2 Py (20)

Equation (20) is the solution obtained after maximization of
the first order condition, where i =y —xfyz is the
restricted maximum likelihood residuals under Hy, @, is the
solution of D(@;) = 0,52 is the solution of (av) =0,F =

(fiy e fy)'and g = (g4, ..., gn)', where g; = @”# -1 . Al

TGy
. . oL
the components of the score test statistic ﬁ(') evaluated at
maximization of the first order condition are all equal to zero

except :—; and % [24]. Thus, the partial derivatives under H,

0
o)
0

D(d)

Th' (@) F
267

are rewritten in vector form as

D(f) = (21)

Also, we obtain the information matrix under the null
hypothesis as a symmetric matrix of the form

/ of  o? aﬁ o2} dlp o} a\
2,2 2 .2 2 2
olof op OLo; ofp oia

u

o7 UA o5 - _ 2 2 4
(]TZ LIz Jrz LEZ @)] i 1(6) = 0'30‘12 0) 0y 0y 0‘,12p gfa (22)
of " of ot ' of oip PO pai p®  pa
_ _NTog[20-1) | 2(r-1)  2(T-1) _ 2(r-D)] , o i 2 2 2 2
T [ 2 | 13 1er | 13 |2 [INT ® oya ao, oja pr «a
rz | iz | ErZ | ErZ)\]| -
CRTN Ve vl
i _ _ 0 0 0 0 0
Since tr(Z) = 0,tr(J;Z) = 2(T — 1)/T) = —tr(E¢Z),tr(J7) = 0 0 0
land tr(Ey) =T —1[21] NI -0 [-5] 0 ) MO ICUEMGp
Th'(&) , 0 0 TT-DFFh (@) ' (al) '
_ _ 2(T-1NTo) [i__ +a'_,,a, [1 <]Tz ]TZ+%+£>]L~L 25° wF = F = F'F
2T 2 ;i o o (23)
_N(T—l)["l "”]+"2”~’[1NT®(];—5+];5+E;—f+2—f)]ﬁ - : ,
- D) 1 g v g Therefore, LM statistic under H, is obtained by
ﬁ =D(@,) = _—t [Z (aak)] + = [ P (6ak) y-1 ] L= D(é)l[i(e)—l] D(g) (24)
= s or[F52 @iag (fa0) ® )| + 3 [F52 (diag (fu) @ Jp) |
Thr hr
% =1 ik + (a41) 1 fuc @ I8
T —616y D)
(pzy TH@D | 2T = DN =)@ = D] [N =T = DIF" | [ 1y a
- (D(p) 252 g) W NG} zéfl)F’g
[(N —T)(6F — aDIF T2h'(@)%(N —T) 1
__ 1 [ D@ -Th @)2AT-1)*5{5yD(P) | 2N(33-31)g'ai FiFg-Th' (@1)*515} D(ﬁ)g] (25)
2[N-T] (T-12(53-51) n' (@) (65 -57)
Under the null hypothesis, the LM statistic of (29) is 2. Conditional Lagrange Multiplier (CLM 1) Test
asymptotically distributed as x5, as N,T — o Here, we derive a conditional LM test for Hy: o m # a7,
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V;and 6% = 0 but "w: #0,p=0
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Under H,,the variance covariance matrix of the

disturbances as given by (14) becomes

* = diag[h(ff )] ® Jr + 02lyr Q Iy + ofly (26)

The spectral decomposition and inverse of X respectively
becomes

X = diag[Th(f/@) + 621 @ J; + o2lyr ® Iy + afly (27)

— . 1 T 1 1
hX 1= dlag[?:|®]T+FINT®ET+U_%IN
i v

where

= Th(f/a) + o (28)

Therefore,

5 =0® = 3o ()] 3l ()
= —ler [dlag [ﬁ] ® JrZ + Iyr ® ErZ + ;ﬂm ®Z] +
l[ﬁ' (diag [é_i] ®JrZ + %INT ® ErZ + ?ilNTZ) ﬁ]
_ [z(r Dyn w1 1%_2“ Dyl ST 132]

% [a (diag [ﬁ—] ®JrZ + 25 lr ® ErZ + ;;INTZ) u]
2(T—1)

since tr(Z) =0and tr(J;Z) = tr(Ep)Z =
_ 2(T-1) 82 f . [1
=-1[5 -o] + [ (aag [37] ©

1 ~
JrZ + = Iy ® ErZ + ;INTZ) u]
v i

82 2(T-1)
P 15T 1

since there is no serial correlation of which its variance has
been expressed as 67

30 () + 2o (aiag 3] @72 +

—Inr ® ErZ + élmz) a]
v A

(T 1)

(29)

Equation (29) is the solution obtained after maximization of
the first order condition, where @ =y —xf;. is the
generalized least square residuals under Hy, Q7 = Th(f/&) +
62,where @ is the ML estimator of a under Hy, and h'(f; &)
is the evaluated value of dh(f;@)/df; @. All the components

..ol L
of the score test statistic F (+) evaluated at maximization of
1

.. a
the first order condition are all equal to zero excepta—; . Thus,

the partial derivatives under H, are expressed in vector form
as

0
0
D) =| O (30)
0
D(p)

Also, we obtain information matrix under the null hypothesis
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as a symmetric matrix of the form

B'B  Boi  Bai Bai PBp
Boi oy ojo; ojoy aip
() = | Bog olo; 0u gigi ofp 31
Bo? olof oioi af afp
Bp oip aip aip p?
Igg (1) 0 0 0 0
0 L)t 0 0 L N“’"oo[’%z]
0 g L@ 2 . 8
0 L lim g 0 ;@i i )
0 = %] 0 0 TN w2

(32)

Thus, a conditional LM statistic under the specified H, is
given as

LMy = D) [(Unr (1)) 7215 | D () (33)

Settlng HNT = dlag (_Ik \/—— % T ‘/—_

N ) LM statistic

also becomes

LMpio = [D@) e | Hr Unr GOYHE) M) (34)
p " p N,T—o0 R
HY(Ine (B0))Hyy —— 1(f1)
Thus, the LM statistic becomes
LMy = D(P)'[U(A1)) " ,p [P (D) 35)

A NN — 1, lm 1, InI
where (1G2)) gy = 3N = oo [2' (v = ) 7]
Under Hy, LM statistic is asymptotically distributed as
x?asN, T - oo.

3. Conditional Lagrange Multiplier (CLM 2) Test
Here, we derive a conditional LM test for Hy: aﬁi = a,f,
V;and a7, # 0 but o2, # 0,p > 0.
Under H,, the variance covariance matrix of the disturbance
term becomes
L= 0i(Iy ®Ir) + aflyly' + i (Iyr ®),)  (36)

where V, = (ﬁ) V; and V; is the AR(1)correlation matrix.

According to [21], the inverse of X under H, becomes

2= 2004 ) - (525) (n @G 67)

Therefore,
I _p@a)==terlzt () + 1oz () z1p
= D@0 = —or [z (7)o (3524
160 1SNI1:0000000091950263
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- Lo X2 (diag (@0 r) — () (diag (fa) ®
0 || + 2o [P (diag (@0 7) -
(A2/12> (dlag(flk) ® V 1]T 1]T )} <A4A4> (dlag(ﬁk) ®

p_le b Yr p_levp_l)u:I
Uu(p4(1_ﬁ)4
6312

a’Zizlfik®((p2(1 — ﬁ)Zv—l -2

0i9°A-P)° 51\~

”—Vp )u]
i

A4/‘l4
@?(1-p)?
£ Azlz ]Z 1flk
a @*(1-p)* | Gue*(1-p)*
£ 5-}2}2 + ’\414 ) ] 1flk
1(4 _ o Bke*-p)?
(1 2 P5e +
v fue 2 (1
Gh9*(1-p)?
5222

h (0»’1)

= 25 0*(1-p)? Zz 1fik —

h'(@,)
26y

i fik] +

Ghet(1-p)*
G222

7—1
7+

_ _M@)e*a-p)y [1
- 262
R @) (@*1-p) | 15—
T i Vp 1(1 —
R (@) (9*(1-p)? 17—
= T 11 fir [u'V
(1 _ aﬁwzu—ﬁ)z)] _ h@)@*a-p)?
Ghp*(1-p)°
2 G222

G272 26}
aup*(1-p)* )
_ h' (@) (9*(1-p)?
264

+

Uu¢4(1_P)4) _

4734
GyA

-1+

A4A.4
R 5202(1-7)2
s fe (@il =1+ FEEPE) =

8222
1,..,p (3%)

Equation (38) is the solution obtained after maximization of
62¢02(1-p)?

the first order condition, where A = 17/)‘1 (1 — 22—+
(rll
Igp(fi,) 0 0
1,4

. 1,4
I(fi) = | 0 0 E(O—)ft

0 0 0

\ 0 0 W @ea-p)*

264

Thus, a conditional LM statistic under the specified H, is
given as

LMalp = D(a),[(INT(I(ﬁZ)))_l|aa]D(&) (41
where (101 Mo = TELEAPE N B oo [Lp (1,

%) F ] Under Hy, LM statistic is asymptotically distributed

as )(,2, as N,T - oo (details of the above mathematical
expressions are available in the appendix upon request from
the authors).

III. RESULTS AND DISCUSSION

The results for the smallest iterated space and time
combinations of N=20 and T=10 are hereby presented. Small
values of N and T were chosen to demonstrate that the
researched model and size of LM tests also work well even for
small samples and once the research opinion being
investigated worked at that sample level, it would definitely
work well asymptotically. This is in line with the opinion
expressed by [24].
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Ghet(1-p)* 5 . . I
%),ﬁ =y —xfss 1S the maximum likelihood

~2 AZ

residuals under H,, B, 62,6 . and &; is the maximum

likelihood estimates of §, 02, G;u of and a; respectively. All

... d
components of the above score test statistic 5 (*) evaluated at

fj are equal to zero except g—i. Also, 6,5 is the value of h(&;)
and h’(dl) is the evaluated value of Oh(fi'a)/df; when
a; =a; = =a, = 0. In addition, tr(V, ;) = ¢?(1 — p)?
and tr(V,” 1]T ~1Jr) = ¢*(1 — p)*. Thus, the partial derivatives
under H,, are expressed in vector form as

0 0
0 0
I(7 Y2 (152
D(&) h (al);pag(l p) F'g
where D(@) = ((@),D(@), -, D(@)) ,F = (fi, . fy)'and g =
A A 8hp2(1-p)?
(g1, - gy) where g; = UjAlG; — 1+ ”62—712 Also, we
A

obtain information matrix under the null hypothesis as a
symmetric matrix of the form.

0 0
0 0
M@)era-p)* I o [IF
10 25t N — o [ " ] (40)
S(@3 .
[INF 0 R’ (@,)%*(1- p)“ [w] /
20‘

Scatter Plot of Audit Fees for Replicates of 1000 When
N=20 and T=10
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Fig. 1 Homoscedastic and zero serial correlation plot of audit fees
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- Fig. 6 Severe Heteroscedastic and positive serial correlation plot of
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° o ‘o o p
above figures are given as follows:
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° AFpoLs = —210,511.8 — 0.001402PBT + 0.0000045TA —
o
T 0.000014TL — 0.00044SHF (42a)
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‘ ‘ ‘ ‘ ‘ 0.0000000002TL — 0.00000008SHF (42b)
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Fig. 4 Homoscedastic and positive serial correlation plot of audit fees
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AFpprs = —210,511.88 — 0.001402PBT + 0.0000454TA —
0.000014TL — 0.0004423SHF (43a)

AFy iy = —36,745.24 — 0.0002479PBT + 0.0000079TA —
0.0000024TL — 0.00007.72SHF ~ (43b)

AFg s = —1.15e — 32 — 7.69e — 41PBT + 2.49e — 42TA —
7.68e —43TL — 2.42e — 41SHF (43c)

AFpoLs = —210,511.8 — 0.001402PBT + 0.0000454TA —
0.000014TL — 0.0004423SHF (44a)

AFyrgiv = 1,116,400 + 0.007437PBT —
0.000240TA +0.000074TL + 0.002346SHF ~ (44b)

AFg5 = —1.16e — 32 — 7.69e — 41PBT + 2.49e — 42TA —
7.68e — 43TL — 2.42e — 41SHF (44c)

AFpoLs = —210,511.80 — 0.001402PBT + 0.000045TA —
0.000014TL — 0.0004423SHF (45a)

AFwirHin =
—3.674,524 — 0.00000002PBT + 0.0000000008TA —

0.0000000002TL — 0.000000007SHF (45b)

AFg.s = —1.16e — 32 — 7.69e — 41PBT + 2.49e — 42TA —
7.68e — 43TL — 2.42e — 41SHF (45¢)

AFpoLs = —210,511.80 — 0.001402PBT + 0.0000454TA —
0.000014TL — 0.000442SHF (46a)

AFy iy = —36,745.24 — 0.000245PBT + 0.000008TA —
0.000002TL — 0.000077SHF (46b)

AFg s = —1.16e — 32 — 7.69e — 41PBT + 2.49¢ — 42TA —
7.68e — 43TL — 2.43e — 41SHF (46¢)

AFps = —210,511.80 — 0.00140239PBT + 0.00004541TA —
0.00001400TL — 0.00044234SHF (47a)

AFy iy = 1,116,400 + 0.0074372PBT — 0.0002408TA +
0.0000743TL + 0.00234585SHF  (47b)

AFgg = —1.15e — 32 — 7.69e — 41PBT + 2.49¢ — 42TA —
7.68e — 43TL — 2.43e — 41SHF (47¢)

Based on the rank results estimated using values of ABIAS

presented in Table I, GLS technique ranked highest with a
rank sum of 243 compared to that of Within and OLS with a
rank sum of 146 and 97, respectively. This implied that GLS
technique is expected to have given the best estimate for the
specified PDRM and this is in line with the works of [23]
where variance was used to rank the results of similar PDRMs.
However, the theoretical concept of our researched model
does not support the empirical structure of the kind of models
fitted through GLS, hence the adoption of a within model
which will guarantee a positive value for the banks audit fee in
line with prior opinion. This is also in line with [27] that
within transformation implements the LSDV model better
because the regression on de-meaned data yields the same
results as estimating the model from the original data and a set
of (N-1) indicator variables for all but one of the panel units.
Thus, (44b) and (47b) are the ideal models that best fitted the
specified audit fee model with the later explained the variation
in audit fees better at 71.92%. This model further exposed the
fact that out of the two-way error components considered in
this research, the individual specific error term affects PDRM
of audit fees more than the time specific error term. This
individual specific error term which has been established to be
heteroscedastic in nature is seen to be severe across banks as
regards their operations with little or no periodicity effects.

Table II presents significance values for the empirical size
of the Joint LM test, Conditional LM test for
heteroscedasticity and zero serial correlation as well as
Conditional LM test for homoscedasticity and serial
correlation. This was achieved at 5% level of significance
when N = 20, 40, and 60 at T = 10. Adapting [21], both the bi-
dimensional remainder error and time specific error terms
(02,0%) take values (2, 2), (2, 6), (6, 2) and (6, 6) in each
experiment. These correspond to cases where the percentages
of the total variance due to both errors are 25% and 75%
accordingly. On the other hand, « is assigned values 0, 1 and 2
with @ = 0 denoting homoscedastic individual specific error,
while @ = 1 and 2 denote moderate and severe heteroscedastic
errors respectively. These results show that the sizes of all the
tests are significant at 5% for the specified linear
heteroscedasticity function. These results conformed with that
of [24] where similar tests have been used to examined
heteroscedasticity and spatial correlation in a two-way random
effect model.

TABLE I
RANKS OF THE PDRM TECHNIQUES USING ABIAS CRITERION FOR HOMOSCEDASTIC, VARYING DEGREE OF HETEROSCEDASTICITY AND SERIAL CORRELATION
LEVELS FOR THE VARIOUS SAMPLE SIZES CONSIDERED

Space Time Serial Correlation Level Homoscedasticity/Heteroscedasticity Degree POLS WITHIN GLS
Homoscedastic 1 2 3
0 Moderate Heteroscedastic 2 1 3
Severe Heteroscedastic 1 2 3
Homoscedastic 1 2 3
20 10 0.5 Moderate Heteroscedastic 1 2 3
Severe Heteroscedastic 1 2 3
Homoscedastic 1 2 3
0.9 Moderate Heteroscedastic 1 2 3
Severe Heteroscedastic 1 2 3
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Space Time Serial Correlation Level Homoscedasticity/Heteroscedasticity Degree POLS WITHIN GLS

w

Homoscedastic
0 Moderate Heteroscedastic
Severe Heteroscedastic

Homoscedastic
40 0.5 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
0.9 Moderate Heteroscedastic

Severe Heteroscedastic
Homoscedastic
0 Moderate Heteroscedastic
Severe Heteroscedastic

Homoscedastic
20 100 0.5 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
0.9 Moderate Heteroscedastic

Severe Heteroscedastic
Homoscedastic
0 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
10 0.5 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
0.9 Moderate Heteroscedastic
40 Severe Heteroscedastic
Homoscedastic
0 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
40 0.5 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
0.9 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
0 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
40 100 0.5 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
0.9 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
0 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
10 0.5 Moderate Heteroscedastic
Severe Heteroscedastic
60 Homoscedastic
0.9 Moderate Heteroscedastic
Severe Heteroscedastic
Homoscedastic
0 Moderate Heteroscedastic
40 Severe Heteroscedastic

Homoscedastic
0.5

VG NG G NG T S SN NG Y G S G G NG J GG NG TS S NG YA GG GG VG VUGS UG PGS UV NG S N T S T T S T S U NG S SOy NG S O T )
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Moderate Heteroscedastic
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Space Time Serial Correlation Level Homoscedasticity/Heteroscedasticity Degree POLS WITHIN GLS
Severe Heteroscedastic 1 2 3
Homoscedastic 1 2 3
0.9 Moderate Heteroscedastic 1 2 3
Severe Heteroscedastic 1 2 3
Homoscedastic 1 2 3
0 Moderate Heteroscedastic 1 2 3
Severe Heteroscedastic 1 2 3
Homoscedastic 1 2 3
60 100 0.5 Moderate Heteroscedastic 1 2 3
Severe Heteroscedastic 1 2 3
Homoscedastic 1 2 3
0.9 Moderate Heteroscedastic 1 2 3
Severe Heteroscedastic 1 2 3
Sum of the Ranks 97 146 243
TABLE I .

ESTIMATED SIZE OF JOINT LM AND CONDITIONAL LM TEST IN LINEAR
HETEROSCEDASTICITY WHEN T=10
g2 of a p N=20 N=40 N=60
Joint LM Test for Homoscedasticity and
Zero Serial Correlation

2 2 0 0 0.00258 0.00257 0.00255
2 6 0 0 0.00260 0.00256 0.00274
6 2 0 0 0.00276 0.00274 0.00271
6 6 0 0 0.00279 0.00282 0.00286

Conditional LM Test for Heteroscedasticity
and Zero Serial Correlation

2 1 0 0.00461 0.00445 0.00440
2 2 2 0 0.00433 0.00432 0.00430
6 1 0 0.00402 0.00401 0.00400
6 2 0 0.00399 0.00389 0.00380
2 1 0 0.00406 0.00404 0.00401
2 2 0 0.00398 0.00396 0.00393
6 6 1 0 0.00452 0.00471 0.00490
6 2 0 0.00499 0.00489 0.00480

Conditional LM Test for Homoscedasticity
and Serial Correlation

2 2 0 05 0.0441 0.0432 0.0447
2 0 09 0.0442 0.0437 0.0446
6 0 05 0.0443 0.0449 0.0450
6 0 09 0.0448 0.0443 0.0441
6 2 0 05 0.0342 0.0357 0.0359
2 0 09 0.0351 0.0353 0.0360
6 0 05 0.0362 0.0337 0.0346
6 0 09 0.0448 0.0343 0.0341

IV.CONCLUSION

Having used necessary statistical methods, in line with the  [1]

aim of this research, there is no doubt that the main purpose

of

this thesis has been fully realized. Therefore, based on the |
results obtained by the empirical analysis of the simulated

data, the following conclusions are arrived at:

e That among the models presented, (44b) and (47b) are the

[3]

only recommended models that satisfy the purpose for

this research, going by the concept

of auditors’ [4]

remuneration which cannot assumed a negative value.
These equations are the within models fitted for simulated |5
panel data when heteroscedasticity is severe with and

without the presence of positive serial correlation.

International Scholarly and Scientific Research & Innovation 13(6) 2019

[6]

165

Thus, taking advantage of “Big data” under the condition
of full estimation of heteroscedasticity and periodicity
effects, (47b) would be preferred over and above that of
(44b) and shall become the only ideal model capable of
scientifically estimated a non-subjective audit fees for the
banks external auditor. This model actually exposed the
fact that the heterogeneity situation in banking operations
is severe with little or no periodicity effect.

That OLS completely breaks down and can only give rise
to unreliable inference in the presence of severe
heteroscedasticity. It only performs better for small
samples and as sample size increases, OLS derailed even
in the absence of heteroscedasticity.

That GLS technique ranked highest compared to others.
However, the theoretical concept of our researched model
does not support the kind of model fitted through GLS,
hence the adoption of a within model which guarantees a
positive value for the specified audit fees model.

That Fixed effect model (FEM) fits the proposed audit
fees model better than Random effect model (REM).

That Monte Carlo scheme exposed the fact that out of the
two-way error components considered, the individual
specific error term affects PDRM of audit fees more than
the time specific error term.

That Monte Carlo results show that both the Joint and the
two conditional LM tests have good size and power under
the adopted linear functional form of heteroscedasticity.
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